Замер сопротивления заземляющих устройств

Замер сопротивления заземляющих устройств

Контур заземления – важный элемент защитного электрооборудования. Он соединяется с системой выравнивания потенциалов строительного объекта и всеми корпусами электроприборов, оберегая людей от получения электротравмы при соприкосновении с токопроводящей цепью. Для соблюдения требований безопасности нужно периодически проверять состояние и эффективность заземляющих устройств.

Как работает заземление

Заземление обеспечивает уменьшение напряжения между электроустановкой и землей до безопасного уровня. При нормальной работе электрооборудования и цепей через контур проходят только малые фоновые токи. При пробое изоляционного слоя проводки на корпусе оборудования возникает высокое напряжение. Оно отводится через контур по РЕ-проводнику на потенциал земли. В итоге напряжение на нетоковедущих поверхностях оборудования уменьшается до безопасного значения.

При повреждении заземляющих устройств напряжение не отводится. Если при этом человек окажется между потенциалами неисправного электроприбора и землей, через его тело будет проходить ток. Поэтому во избежание электротравм при эксплуатации электрического оборудования важно поддерживать эффективность заземления и периодически проверять его состояние.

Причины проблем с сопротивлением заземления

В нормально работающем контуре ток в аварийной ситуации по РЕ-проводнику идет на контактирующие с грунтом токоотводящие электроды. Общий поток равномерно делится на составляющие и следует на потенциал земли. Но продолжительное пребывание тоководов в агрессивной среде грунта приводит к окислению металла и появлению на его поверхности окисной пленки.

Из-за коррозийных явлений ухудшается протекание тока, и увеличивается электрическое сопротивление контактов. Коррозия в виде отстающих от металлической поверхности чешуек нарушает локальный электрический контакт. При дальнейшем коррозийном повреждении тоководов сопротивление контура возрастает, заземляющее устройство становится менее проводимым и не справляется со своими задачами. Для выяснения состояния контура заземления выполняются замеры сопротивления заземляющих устройств.

Цель замеров сопротивления ЗУ

Качество заземления характеризуется величиной сопротивления протеканию тока. Чем ниже это значение, тем лучше справляются со своими задачами заземляющие устройства. Основные способы уменьшения сопротивления – увеличение площади заземляющих электродов и уменьшение удельного электрического сопротивления почвы.
Чтобы снизить сопротивление, можно увеличить число или глубину заземляющих электродов. Измерение сопротивления заземляющих устройств помогает минимизировать риск аварий, поломки электроустановок и нанесения урона здоровью или жизни людей.

Типы заземляющих устройств

Есть 3 вида заземления:
– Рабочее – определенные точки электрической цепи соединены с землей. Этот тип заземления осуществляется при помощи прибивных предохранителей, резисторов и других элементов. Оно необходимо для безопасного функционирования в нормальных и аварийных рабочих условиях.
– Заземление молниезащиты – молниеприемники и разрядники соединяются с землей, чтобы токи молнии отводились в землю без ущерба для электроустановки и находящихся рядом людей.
– Защитное заземление – металлические части, по которым не проходит ток, но есть риск оказаться под напряжением в случае замыкания на корпус. Для обеспечения безопасности соединяются с землей.

Нормальные величины для сопротивления заземляющих устройств

Согласно Правилам устройства электроустановок, оптимальная периодичность измерений сопротивления заземления – не реже, чем единожды в год. При этом первая проверка осуществляется сразу после монтажных работ, чтобы удостовериться, что схема заземлена правильно.

Норматив величины сопротивления заземления зависит от напряжения источника в цепи.

Трехфазный ток в источнике с напряжением:

Однофазный ток в источнике с напряжением:

Норма сопротивления заземления

660 В

380 В

Не превышает 2 Ом

Не превышает 4 Ом

Не превышает 6 Ом

Как измеряют сопротивление заземления

Методика измерения сопротивления заземляющих устройств основывается на разных теоретических базах:

  • по формуле Дуайта (вычисляет сопротивление заземления в зависимости от радиуса электрода, глубины его погружения в землю и среднего удельного сопротивления грунта)
  • по принципу падения потенциала
  • по стандартному 3-проводному методу (другое название – метод 62%)
  • по двухточечному методу (с последовательно включенными двумя устройствами заземления – методика, отлично подходящая для городских условий)
  • по методу двух клещей (когда передающие клещи провоцируют ток в контуре, а дополнительные – снимают его величину)
  • по методу Веннера (выявляет зависимость между расстоянием от электрода до электрода и глубиной, где течет ток).

Замер сопротивления контура заземления проходит с применением измерительных приборов М416 или Ф4103-М1. Ход работ таков:

  • Элементы питания устанавливаются в измеритель заземления.
  • Устанавливается переключатель в положение «Контроль», при этом стрелку индикатора нужно привести в отметку «0» после нажатия кнопки и вращения рукоятки «реохорд». Соединительные провода подключаются к прибору-измерителю, как указано в инструкции.
  • Зонд и заземлитель (которые выступают в качестве вспомагательных электродов) углубляют до 0,5 м, затем подключают к ним соединительные провода.
  • Переключатель устанавливают в «Х1», нажимают кнопку и двигают стрелку индикатора вращением ручки реохорда в нулевое положение. Результат умножается на необходимый множитель.

Методы замеров сопротивления заземляющих устройств

По 3-проводной схеме (3П) сопротивление заземляющего устройства измеряется при значениях выше 5 Ом. В остальных случаях прибор подключается по 4-проводной схеме (4П). Нужный метод измерения выбирается кнопкой «Режим». При использовании метода 4П выполняются следующие действия:

    • Определяется максимальная диагональ (Д) заземляющего устройства (ЗУ).
    • ЗУ соединяется измерительными кабелями с гнездами Т1 и П1.
    • В грунт на дистанции 1,5 Д, но не менее 20 м от ЗУ, устанавливается потенциальный штырь П2.
    • В грунт на расстоянии больше 3Д, но не меньше 40 м от ЗУ, устанавливается токовый штырь Т2.
    • К разъему Т2 прибора подключается соединительный кабель.
    • Проводится серия замеров. При этом потенциальный штырь П2 последовательно устанавливается в грунт на расстоянии 10, 20, …, 90% от дистанции до токового штыря Т2. При этом ЗУ и измерительные штыри обычно размещаются на одной линии. Амплитудное значение напряжения помехи (при его наличии) измеряется в вольтах и отображается на индикаторе. В таком случае нужно отыскать подходящее направление размещения штырей, чтобы минимизировать значение напряжения помехи.
Читайте также:  Защитное заземление это

  • Строится график зависимости сопротивления от дистанции между ЗУ и П2. При равномерном возрастании сопротивления в средней части графика истинным считается значение между точками с наименьшей разницей величины сопротивления (не более 5%). Иначе все расстояния от ЗУ до П2 и Т2 нужно увеличить в 1,5–2 раза или сменить направление расположения штырей.

При использовании 3-проводного метода нужно выбрать его кнопкой «Режим», подсоединить измерительный кабель наименьшей длины к гнезду Т1. Замеры выполняются аналогично, но важно учесть, что измеренная величина сопротивления ЗУ включает сопротивление измерительного кабеля, подсоединенного к гнезду Т1.

Используемые приборы и средства

Сопротивление ЗУ замеряется специальными приборами – измерителями сопротивления заземления типа ИС-10, EurotestXE 2,5 кВ MI 3102H, М416, Ф4103-М1, MRU различных конфигураций и др. Дополнительно используются диэлектрические боты и перчатки, защитная каска и инструмент с изолирующими рукоятками.

В процессе проведения работ используется инструмент для забивания электродов в грунт на глубину не менее 0,5 м. Прибор подключается к корпусу электроустановки с помощью щупа, в роли которого применяется квадратный напильник с глухоприсоединенным медным проводом сечением 2,5 мм 2 .

Периодичность проведения замеров

Периодичность необходимых замеров сопротивления ЗУ основывается на правилах эксплуатации технических устройств. Для зданий действуют индивидуальные правила, включающие общие рекомендации по осмотру контура заземления. Периодичность замеров значится в специальных справочных материалах, используемых при реализации профилактических мероприятий. В большинстве случаев для поддержания работоспособности электросети достаточно осматривать участки заземления раз в полгода.

Замеры сопротивления переносного электрооборудования и дымовых труб должны проводиться ежегодно и включать обследование грунта возле заземленного электрооборудования. Сопротивление ЗУ в виде опор воздушных ЛЭП с напряжением до 1 кВт необходимо измерять с периодичностью раз в 6 лет, а с напряжением более 1 кВт – раз в 12 лет. Замеры сопротивления ЗУ нужно проводить во время максимальной засухи или замерзания грунта.

Инженерный центр «ПрофЭнергия» имеет огромный опыт и высокоточное оборудование, позволяющее оперативно измерять сопротивление заземляющих устройств и проводить другие электротехнические работы.

Инженерный центр “ПрофЭнергия” имеет все необходимые лицензии для измерения сопротивления заземляющих устройств, слаженный коллектив профессионалов и сертификаты, которые дают право осуществлять все необходимые испытания и замеры. Оставив выбор на электролаборатории “ПрофЭнергия” вы выбираете надежную и качествунную работу своего оборудования!

Если Вы хотите заказать замер сопротивления заземления, а также по другим вопросам, звоните по телефону: +7 (495) 181-50-34 .

Измерение сопротивления контура защитного заземления

Защитным заземлением называется преднамеренное электрическое соединение с землей или эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением вследствие замыкания на корпус.

Задача защитного заземления – устранение опасности поражения током в случае прикосновения к корпусу и другим нетоковедущим металлическим частям электроустановки, оказавшейся под напряжением.

Принцип действия заземления – снижение напряжения между корпусом, оказавшимся под напряжением, и землей до безопасного значения.

Заземляющие устройства после монтажных работ и периодически не реже один раз в год испытываются по программе Правил устройства электроустановок. По программе испытания производится измерение сопротивления заземляющего устройства.

Сопротивление заземляющего устройства, к которому присоединены нейтрали генераторов или трансформаторов или выводов источников однофазного тока, в любое время года должно быть не более 2, 4, 8 Ом соответственно при линейных напряжениях 660, 380, и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока.

Измерения сопротивления контура заземляющего устройства производятся измерителем заземления М416 или Ф4103-М1.

Описание измерителя заземления М416

Измерители заземления М416 предназначены для измерения сопротивления заземляющих устройств, активных сопротивлений и могут быть использованы для определения удельного сопротивления грунта (?). Диапазон измерения прибора от 0,1 до 1000 Ом и имеет четыре диапазона измерения: 0,1 … 10 Ом, 0,5 … 50 Ом, 2,0 … 200 Ом, 100 … 1000 Ом. Источником питания служат три соединенные последовательно сухие гальванические элемента напряжением по 1,5 В.

Измеритель сопротивления заземления Ф4103-М1

Измеритель сопротивления заземления Ф4103-М1 предназначен для измерения сопротивления заземляющих устройств, удельного сопротивления грунтов и активных сопротивлений как при наличии помех, так и без них с диапазоном измерений от 0-0,3 Ом до 0-15 Ком (10 диапазонов).

Измеритель Ф4103 является безопасным.

При работе с измерителем в сетях с напряжением выше 36 В необходимо выполнять требования безопасности, установленные для таких сетей. Класс точности измерительного прибора Ф4103 – 2,5 и 4 (в зависимости от диапазона измерения).

Питание – элемент (R20, RL20) 9 шт. Частота оперативного тока – 265-310 Гц. Время установления рабочего режима – не более 10 секунд. Время установления показаний в положении “ИЗМ I” – не более 6 секунд, в положении “ИЗМII” – не более 30 секунд. Продолжительность непрерывной работы не ограничена. Норма средней наработки на отказ – 7250 часов. Средний срок службы – 10 лет Условия эксплуатации – от минус 25 ° С до плюс 55 ° С. Габаритные размеры, мм – 305х125х155. Масса, кг , не более – 2,2.

Перед проведением измерений измерителем Ф4103 необходимо, по возможности, уменьшить количество факторов, вызывающих дополнительную погрешность, например, устанавливать измеритель практически горизонтально, вдали от мощных электрических полей, использовать источники питания 12±0,25В, индуктивную составляющую учитывать только для контуров, сопротивление которых меньше 0,5 Ом, определять наличие помех и так далее. Помехи переменного тока выявляются по качаниям стрелки при вращении ручки ПДСТ в режиме “ИЗМI”. Помехи импульсного (скачкообразного) характера и высокочастотные радиопомехи выявляются по постоянным непериодическим колебаниям стрелки.

Читайте также:  Правила работы с мегаомметром

Порядок проведения измерения сопротивления контура защитного заземления

1. Установить элементы питания в измеритель заземления.

2. Установить переключатель в положение «Контроль 5 ?», нажать кнопку и вращением ручки «реохорд» добиться установки стрелки индикатора в нулевую отметку шкалы.

3. Подключить соединительные провода к прибору, как показано на рисунке 1, если измерения производятся прибором М416 или рисунке 2, если измерения производятся прибором Ф4103-М1.

4. Углубить дополнительные вспомогательные электроды (заземлитель и зонд ) по схеме рис. 1 и 2 на глубину 0,5 м и подключить к ним соединительные провода.

5. Переключатель установить в положение «Х1».

6. Нажать кнопку и вращая ручку «реохорда» приблизить стрелку индикатора к нулю.

7. Результат измерения умножить на множитель.

Подключение прибора М416 для измерения сопротивления контура заземления

Измерение сопротивления заземления классическими трёх- и четырёхпроводным методами

Когда идёт речь о вопросах безопасности людей предпочтительнее использовать методики измерений, хорошо зарекомендовавшие себя на протяжении десятилетий. Применительно к заземлению таким методом является измерение сопротивления с помощью комбинации амперметра и вольтметра (рекомендуемый ГОСТ Р 50571.16-2007). Иногда такой метод называют «трёхпроводным» (или «трёхзажимным»). Существует и более точная его модификация, именуемая «четырёхпроводным» («четырёхзажимным») методом. Как правило, оба метода могут быть реализованы в одном измерительном приборе.

Измерение сопротивления заземления по методу амперметра-вольтметра

При проведении измерений данным методом заземление отключается от электроустановки. На расстоянии не менее 20 м от исследуемого заземления в землю вкапывается потенциальный штырь. На расстоянии не менее 40 м от исследуемого заземления вкапывают токовый штырь. Штыри и заземление должны быть расположены на одной линии. Конкретные рекомендации по расстояниям между заземлением и штырями могут отличаться в зависимости от типа заземления и модели применяемой измерительной аппаратуры. Как правило, такие рекомендации указываются в инструкции к измерительной установке.

На контур, образованный исследуемым заземлением, токовым штырем и амперметром, через трансформатор передается переменный ток. В современных приборах это обычно не синусоида с частотой 50 Гц, а меандр с частотой порядка 100 — 200 Гц. Тем самым проверяется работоспособность заземления на гармониках высшего порядка и удается частично сократить влияние помех. При помощи вольтметра измеряется напряжение между заземлением и потенциальным штырем. Далее на основе закона Ома вычисляется сопротивление заземления по формуле:

R = U/I,
где U – напряжение между заземлением и потенциальным штырем, а I – сила тока в контуре, образованном заземлением, токовым штырем, трансформатором и амперметром.

Общая проблема классических методов измерения сопротивления заземления – влияние блуждающих токов в почве.

Метод амперметра-вольтметра на практике имеет две разновидности: трёхпроводный и четырёхпроводный методы, о которых и пойдет далее речь.

Трёхпроводный метод

Обозначим клеммы для измерения напряжения как П1 и П2, а клеммы для измерения тока — как T1 и T2. В реально существующих измерительных приборах эти клеммы могут иметь иные обозначения.

Схема измерения трёхпроводным методом

При трёхпроводном методе клеммы П1 и T1 соединяются перемычкой и подключаются одним проводом к исследуемому заземлению. Клемма П2 соединяется проводом с потенциальным штырем, а клемма П1 — с токовым штырем.

Преимуществом трёхпроводного метода является меньшее количество проводов. Недостатком — сильное влияние сопротивления провода, идущего к заземлению, на результаты измерения. Поэтому, обычно, трёхпроводный метод применяется для измерения сопротивления заземления, значение которого заведомо выше 5 Ом.

Четырёхпроводный метод

Когда к точности измерений предъявляются более высокие требования, используется четырёхпроводный метод. При нем к исследуемому заземлению идут раздельные провода от клемм П1 и T1, которые соединяются только непосредственно на клеммах заземления.

Схема измерений четырёхпроводным методом

Через провод, который идет к T1, течет ток. Образующаяся при этом разность напряжений на концах провода вносит погрешность в измерения, характерные для трёхпроводного метода. Но при четырёхпроводном методе точка измерения напряжения (на клеммах заземления) соединена с измерительным прибором отдельным проводом. По этому проводу течет пренебрежимо малый ток (не более единиц миллиампер), так что его сопротивление практически не вносит погрешности в измерения.

Повышение точности измерений

Классический способ измерения сопротивления заземления чувствителен к неравномерности свойств почвы в разных местах. Поэтому для повышения точности измерения рекомендуется несколько раз поменять расположение потенциального штыря с шагом, примерно равным 10% от его номинального расстояния до заземления. Разброс измеренных значений не должен быть больше 5%. Если он больше, то расстояние между исследуемым заземлением и штырями увеличивают в 1,5 раза или меняют направление линии, по которой расставлены штыри.

Выбор измерителя сопротивления заземления

До сих пор в литературе для классического метода измерения сопротивления рекомендуются приборы еще советской разработки. Но они уже не соответствуют современным реалиям, ведь электрооборудования в наших домах с тех пор стало намного больше. Появились новые устройства (например, базовые станции мобильной связи), предъявляющие особые требования к заземлению. Поэтому есть смысл обратиться к продукции ведущих мировых брендов. Но и здесь не все так просто — цены зачастую «кусаются», да и могут быть расхождения в отечественных и зарубежных нормах.

Оптимальным вариантом представляется измерительная аппаратура, выпущенная в Китае на основе самых современных технологий, но по спецификациям и под локальным брендом российской компании. Например, ЖГ-4300 (аббревиатура расшифровывается как «Железный Гарри»). Это устройство позволяет измерять сопротивление заземления в пределах от 0,05 Ом до 20,9 кОм. Доступно измерение по двух- трёх- и четырёхпроводному методам. Напряжение на клеммах не превышает 10 В, что позволяет проводить измерения с высоким уровнем электробезопасности. Прибор не просто соответствует российским нормам, он включен в Государственный реестр средств измерений. При этом цена раза в 3 ниже, чем у аналогов от известных зарубежных брендов.

Читайте также:  Неисправности магнитного пускателя

Другие способы измерений

Более простым в использовании, но при этом менее точным является двухпроводный метод измерения сопротивления заземления. Он позволяет быстро получить оценку сопротивления, что бывает ценным, например, при проведении ремонтных работ. Об этом методе рассказывается в отдельной статье (ссылка).

Дальнейшим развитием классического метода измерения стал так называемый компенсационный метод. Он позволяет чисто аналоговыми способами отстроиться от помех, вызванных блуждающими токами. Недостатком данного метода является сложность настройки прибора и более высокие требования к квалификации оператора, поэтому большой популярности он не завоевал.

Также существует семейство безэлектродных методов измерения, позволяющих не отключать заземление от электроустановки. Они основаны на использовании токовых клещей. Метод, основанный на применении двух клещей также относится к рекомендованным ГОСТ Р 50571.16-2007. Недостатком такого метода является то, что он может напрямую применяться только в системах ТТ и системах TN с ячеистым заземлением. Для обычных систем TN потребуется кратковременная установка перемычки между нейтралью и заземлением, что потенциально представляет угрозу электробезопасности, так что питание во всем здании, где установлено заземление, придется на время измерений отключить.

Выводы

И в цифровую эпоху классический метод вольтметра-амперметра является основным для измерения сопротивления заземлений. Накоплен большой опыт его применения, поэтому его можно считать надежным. Цифровые технологии позволяют мгновенно вычислить значение сопротивления и сразу увидеть результат на дисплее измерительного прибора. Кроме этого, с помощью современных технологий удается в значительной степени подавлять помехи при измерениях. Благодаря этому точность измерений может быть доведена до 1 — 2%, что позволяет классическим методам успешно конкурировать с методами, основанными на использовании токовых клещей, погрешность у которых заметно выше.

Как измерить сопротивление контура заземления – обзор методик

Переключатель на приборе устанавливается в одно из положений «Х1». Зажимаем кнопку и крутим ручку, пока стрелка на циферблате не сравняется с отметкой «ноль». Полученный результат необходимо умножить на ранее выбранный множитель. Это и будет искомое значение.

На видео наглядно демонстрируется, как измерить сопротивления заземления прибором:

Также могут быть использованы более современные цифровые приборы, которые намного упрощают работы по замерам, более точны и сохраняют последние результаты измерений. Например, это приборы серии MRU – MRU200, MRU120, MRU105 и др.

Работа токовыми клещами

Сопротивление контура заземления можно измерять также токовыми клещами. Их преимущество в том, что нет необходимости отключать заземляющее устройство и применять вспомогательные электроды. Таким образом, они позволяют достаточно оперативно вести контроль за заземлением. Рассмотрим принцип работы токовых клещей. Через заземляющий проводник (который в данном случае является вторичной обмоткой) протекает переменный ток под воздействием первичной обмотки трансформатора, которая находится в измерительной головке клещей. Для расчета величины сопротивления необходимо разделить значение ЭДС вторичной обмотки на величину тока, измеренную клещами.

В домашних условиях можно использовать токовые клещи С.А 6412, С.А 6415 и С.А 6410. Более подробно узнать о том, как пользоваться токоизмерительными клещами, вы можете в нашей статье!

Безэлектродный способ

Этот метод является наиболее современным и позволяет измерять сопротивление контура, не прибегая к размыканию заземляющих стержней и установке дополнительных заземляющих электродов. В связи с этим условием, метод имеет ряд дополнительных преимуществ:

  • возможность производить замеры в полевых условиях, в тех местах, где невозможно применить другие методы измерения сопротивления;
  • экономия времени и средств для выполнения работ.

Безэлектродный метод может применяться, если используются двое измерительных токовых клещей. Например, это могут быть современные тестеры типа Fluke 163. Клещи располагают вокруг заземляющего электрода или соединительного кабеля. Клещами при этом измеряется индуцируемое напряжение. Его амплитуда фиксируется вторыми клещами.

Тестер автоматически определяет сопротивление контура заземления для данного соединения.

Периодичность измерений

Проводить визуальный осмотр, измерения, а также при необходимости частичное раскапывание грунта нужно согласно графику, который установлен на предприятии, но не реже чем один раз в 12 лет. Получается, что, когда производить замеры заземления – решать вам. Если вы живете в частном доме, то вся ответственность лежит на вас, но не рекомендуется пренебрегать проверкой и замерами сопротивления, так как от этого напрямую зависит ваша безопасность, при пользовании электрооборудованием.

При проведении работ необходимо понимать, что в сухую летнюю погоду можно добиться наиболее реальных результатов измерений, так как грунт сухой и приборы дадут наиболее правдивые значения сопротивлений заземления. Напротив, если замеры будут проведены осенью либо весной в сырую, влажную погоду, то результаты будут несколько искажены, так как мокрый грунт сильно влияет на растекаемость тока, что, в свою очередь, дает большую проводимость.

Если вы хотите, чтобы измерения защитного и рабочего заземления проводили специалисты, то необходимо обратиться в специальную электротехническую лабораторию. По окончании работы вам будет выдан протокол измерения сопротивления заземления. В нем отображается место проведения работ, назначение заземлителя, сезонный поправочный коэффициент, а также на каком расстоянии друг от друга находятся электроды. Образец протокола предоставлен ниже:

Напоследок рекомендуем просмотреть видео, в котором показывается как измеряют сопротивление заземления опоры ВЛ:

Вот мы и рассмотрели существующие методики измерения сопротивления заземления в домашних условиях. Если вы не обладаете соответствующими навыками рекомендуем воспользоваться услугами специалистов, которые все сделают быстро и качественно!

Также рекомендуем прочитать: