Частотный преобразователь – виды, принцип действия, схемы подключения

Частотный преобразователь – виды, принцип действия, схемы подключения

Ротор любого электродвигателя приводится в движение под действием сил, вызванных вращающимся электромагнитным полем внутри обмотки статора. Скорость его оборотов обычно определяется промышленной частотой электрической сети.

Ее стандартная величина в 50 герц подразумевает совершение пятидесяти периодов колебаний в течение одной секунды. За одну минуту их число возрастает в 60 раз и составляет 50х60=3000 оборотов. Такое же число раз проворачивается ротор под воздействием приложенного электромагнитного поля.

Если изменять величину частоты сети, приложенной к статору, то можно регулировать скорость вращения ротора и подключенного к нему привода. Этот принцип заложен в основу управления электродвигателями.

Виды частотных преобразователей

По конструкции частотные преобразователи бывают:

1. индукционного типа;

Асинхронные электродвигатели, выполненные по схеме с фазным ротором и запущенные в режим генератора, являются представителями первого вида. Они при работе обладают низким КПД и отмечаются маленькой эффективностью. Поэтому они не нашли широкого применения в производстве и используются крайне редко.

Способ электронного преобразования частоты позволяет плавно регулировать обороты как асинхронных, так и синхронных машин. При этом может быть реализован один из двух принципов управления:

1. по заранее заданной характеристике зависимости скорости вращения от частоты (V/f);

2. метод векторного управления.

Первый способ является наиболее простым и менее совершенным, а второй используется для точного регулирования скоростей вращения ответственного промышленного оборудования.

Особенности векторного управления частотным преобразованием

Отличием этого способа является взаимодействие, влияние устройства управления преобразователя на «пространственный вектор» магнитного потока, вращающийся с частотой поля ротора.

Алгоритмы для работы преобразователей по этому принципу создаются двумя способами:

1. бессенсорного управления;

Первый метод основан на назначении определенной зависимости чередования последовательностей широтно-импульсной модуляции (ШИМ) инвертора для заранее подготовленных алгоритмов. При этом амплитуда и частота напряжения на выходе преобразователя регулируются по скольжению и нагрузочному току, но без использования обратных связей по скорости вращения ротора.

Этим способом пользуются при управлении несколькими электродвигателями, подключенными параллельно к преобразователю частоты. Потокорегулирование подразумевает контроль рабочих токов внутри двигателя с разложением их на активную и реактивную составляющие и внесение корректив в работу преобразователя для выставления амплитуды, частоты и угла для векторов выходного напряжения.

Это позволяет повысить точность работы двигателя и увеличить границы его регулирования. Применение потокорегулирования расширяет возможности приводов, работающих на малых оборотах с большими динамическими нагрузками, такими как подъемные крановые устройства или намоточные промышленные станки.

Использование векторной технологии позволяет применять динамическую регулировку вращающихся моментов к трехфазным асинхронным двигателям.

Принципиальную упрощенную электрическую схему асинхронного двигателя можно представить следующим видом.

На обмотки статора, обладающие активным R1 и индуктивным X1 сопротивлениями, приложено напряжение u1. Оно, преодолевая сопротивление воздушного зазора Хв, трансформируется в обмотку ротора, вызывая в ней ток, который преодолевает ее сопротивление.

Векторная диаграмма схемы замещения

Ее построение помогает понять происходящие процессы внутри асинхронного двигателя.

Энергия тока статора разделяется на две части:

iµ — потокообразующую долю;

iw — моментообразующую составляющую.

При этом ротор обладает активным сопротивлением R2/s, зависящим от скольжения.

Для бессенсорного управления измеряются:

По их значениям рассчитывают:

iµ — потокообразующую составляющую тока;

iw — моментообразующую величину.

В алгоритм расчета уже заложили электронную эквивалентную схему асинхронного двигателя с регуляторами тока, в которой учтены условия насыщения электромагнитного поля и потерь магнитной энергии в стали.

Обе этих составляющих векторов тока, отличающиеся по углу и амплитуде, вращаются совместно с системой координат ротора и пересчитываются в стационарную систему ориентации по статору.

По этому принципу подстраиваются параметры частотного преобразователя под нагрузку асинхронного двигателя.

Принцип работы частотного преобразователя

В основу этого устройства, которое еще называют инвертором, заложено двойное изменение формы сигнала питающей электрической сети.

Вначале промышленное напряжение подается на силовой выпрямительный блок с мощными диодами, которые убирают синусоидальные гармоники, но оставляют пульсации сигнала. Для их ликвидации предусмотрена батарея конденсаторов с индуктивностью (LC-фильтр), обеспечивающая стабильную, сглаженную форму выпрямленному напряжению.

Затем сигнал поступает на вход преобразователя частоты, который представляет собой мостовую трехфазную схему из шести силовых транзисторов серии IGBT или MOSFET с диодами защиты от пробоя напряжений обратной полярности. Используемые ранее для этих целей тиристоры не обладают достаточным быстродействием и работают с большими помехами.

Для включения режима «торможения» двигателя в схему может быть установлен управляемый транзистор с мощным резистором, рассеивающим энергию. Такой прием позволяет убирать генерируемое двигателем напряжение для защиты конденсаторов фильтра от перезарядки и выхода из строя.

Способ векторного управления частотой преобразователя позволяет создавать схемы, осуществляющие автоматическое регулирование сигнала системами САР. Для этого используется система управления:

2. ШИМ (широтного импульсного моделирования).

Метод амплитудного регулирования основан на изменении входного напряжения, а ШИМ — алгоритма переключений силовых транзисторов при неизменном напряжении входа.

При ШИМ регулировании создается период модуляции сигнала, когда обмотка статора подключается по строгой очередности к положительным и отрицательным выводам выпрямителя.

Читайте также:  Проверка диэлектрических перчаток

Поскольку частота такта генератора довольно высокая, то в обмотке электродвигателя, обладающего индуктивным сопротивлением, происходит их сглаживание до синусоиды нормального вида.

Способы ШИМ управления позволяют максимально исключить потери энергии и обеспечивают высокий КПД преобразования за счет одновременного управления частотой и амплитудой. Они стали доступны благодаря развитию технологий управления силовыми запираемыми тиристорами серии GTO или биполярных марок транзисторов IGBT, обладающих изолированным затвором.

Принципы их включения для управления трехфазным двигателем показаны на картинке.

Каждый из шести IGBT-транзисторов подключается по встречно-параллельной схеме к своему диоду обратного тока. При этом через силовую цепь каждого транзистора проходит активный ток асинхронного двигателя, а его реактивная составляющая направляется через диоды.

Для ликвидации влияния внешних электрических помех на работу инвертора и двигателя в конструкцию схемы преобразователя частоты может включаться помехозащитный фильтр, ликвидирующий:

наводимые работающим оборудованием электрические разряды.

Их возникновение сигнализирует контроллер, а для уменьшения воздействия используется экранированная проводка между двигателем и выходными клеммами инвертора.

С целью улучшения точности работы асинхронных двигателей в схему управления частотных преобразователей включают:

ввода связи с расширенными возможностями интерфейса;

информационный Led-дисплей, отображающий основные выходные параметры;

тормозной прерыватель и встроенный ЭМС фильтр;

систему охлаждения схемы, основанную на обдуве вентиляторами повышенного ресурса;

функцию прогрева двигателя посредством постоянного тока и некоторые другие возможности.

Эксплуатационные схемы подключения

Частотные преобразователи создаются для работы с однофазными или трехфазными сетями. Однако, если есть промышленные источники постоянного тока с напряжением 220 вольт, то от них тоже можно запитывать инверторы.

Трехфазные модели рассчитываются на напряжение сети 380 вольт и выдают его на электродвигатель. Однофазные же инверторы питаются от 220 вольт и на выходе выдают три разнесенных по времени фазы.

Схема подключения частотного преобразователя к двигателю может быть выполнена по схемам:

Обмотки двигателя собираются в «звезду» для преобразователя, запитанного от трехфазной сети 380 вольт.

По схеме «треугольник» собирают обмотки двигателя, когда питающий его преобразователь подключен к однофазной сети 220 вольт.

Выбирая способ подключения электрического двигателя к преобразователю частоты надо обращать внимание на соотношение мощностей, которые может создать работающий двигатель на всех режимах, включая медленный, нагруженный запуск, с возможностями инвертора.

Нельзя постоянно перегружать частотный преобразователь, а небольшой запас его выходной мощности обеспечит ему длительную и безаварийную работу.

Как работают преобразователи частоты для асинхронных двигателей

Асинхронные электродвигатели – самые распространенные электрические машины. Они отличаются простотой конструкции, дешевизной, высокой ремонтопригодностью, а также другими преимуществами. Они широко используются для привода промышленного оборудования, механизмов и устройств самого разного назначения. Сферу их применения несколько ограничивают высокие пусковые токи, затруднение регулирования скорости, ударные механические нагрузки на оборудование, соединенное с валом при пуске.

Частотные преобразователи позволяют осуществлять мягкий пуск электрических машин, ограничивать пусковые токи, синхронизировать момент силы на валу с моментом нагрузки, осуществлять точную регулировку скорости вращения, подключать трехфазные двигатели в однофазную сеть без конденсаторов.

Электродвигатель – устройство для преобразования электроэнергии во вращательное движение вращающейся части электрической машины. Преобразование энергии в двигателях происходит за счет взаимодействия магнитных полей обмоток статора и ротора. Эти электрические машины широко используются во всех отраслях промышленности, в качестве привода электротранспорта и инструментов, в системах автоматизации, бытовой техники и так далее.

Принцип действия частотных преобразователей

Принцип действия частотного регулирования основан на зависимости скорости вращения и момента силы на валу двигателя переменного тока от частоты напряжения питания. Частотные регуляторы изменяют частоту поданного на электродвигатель напряжения, тем самым регулируя скорость вращения ротора и момент силы.

Преобразование частоты может осуществляться несколькими способами. Схема преобразования частоты с непосредственной электрической связью с сетью представляет собой управляемый выпрямитель на тиристорах. Управляющий блок генерирует сигналы, поочередно отпирающие полупроводниковые устройства, подающие напряжение заданной частоты на обмотки электрической машины.

Такая схема отличается высоким к.п.д., обеспечивает стабильную работу двигателя при небольших скоростях вращения ротора, передачу генерируемой электроэнергии при торможении двигателя в сеть.

Однако, такие недостатки, как невозможность изменять частоту в большую сторону, наличие в выходном напряжении постоянной составляющей и субгармоник, вызывающих перегрев обмоток и появление электромагнитных помех, ограничивают сферы применения частотников с непосредственной связью.

Большинство современных частотных преобразователей построено на базе схем двойного преобразования. Такое техническое решение имеет следующие преимущества:

  • Возможность изменять частоту как в большую, так и меньшую сторону.
  • Выходное напряжение чистой синусоидальной формы.
  • Отсутствие высших гармоник.
  • Плавное, высокоточное регулирование частоты питающего напряжения двигателя.

Состоит такой преобразователь частоты из трех блоков:

  • Диодного или тиристорного выпрямителя с емкостными, индуктивными или комбинированными фильтрами. Этот узел осуществляет выпрямление сетевого напряжения и его сглаживание.
  • Инвертирующего блока. Этот элемент осуществляет обратное преобразование постоянного напряжения в переменное. Индуктивный элемент на выходе осуществляет фильтрацию постоянной составляющей, а также высокочастотных помех, наличие которых негативно сказывается на работе электродвигателя.
  • Управляющей схемы на базе микропроцессора. Основные ее функции – задание частоты выходного напряжения и тока. Частота тока на выходе инвертора определяется шириной или длительностью управляющих импульсов со схемы управления (широтно- или частотно- импульсная модуляция). Процессор также осуществляет связь с удаленными пунктами управления, автоматическое регулирование по обратной связи по механическим и электрическим характеристикам подключенной к нему электрической машины, а также другие функции.
Читайте также:  Какого цвета фаза в проводе

Таким образом, при частотном регулировании питающее напряжение сначала преобразуется в постоянное, затем инвертируется в переменное напряжение требуемой частоты.

Выбор частотного преобразователя

При проектировании частотно-регулируемого электропривода необходимо учесть множество нюансов. При выборе частотника руководствуются следующими критериями:

  • Назначение преобразователя. Многие производители выпускают ПЧ, предназначенные для электродвигателей насосов, лифтов, электроприводов вентиляционных систем, а также универсальные устройства общепромышленного назначения. Специализированные частотники производят под конкретное технологическое оборудование. Возможность их адаптации существенно ограничена. Общепромышленные регуляторы частоты можно настраивать под различные приводы.
  • Способ управления и поддержка различных протоколов связи. Регулируемые по частоте электроприводы обычно интегрируются в комплексные системы автоматизации и удаленного контроля и управления. Частотный преобразователь должен быть укомплектован контроллером, который поддерживает связь по протоколу, применяемому в конкретной АСУТП.
  • Мощность и перезагрузочная способность. Номинальная электрическая мощность преобразователя должна быть больше аналогичного параметра электродвигателя на 15-30%. При расчете мощности учитывают пусковые токи электрической машины, пиковые нагрузки на двигатель и их длительность. Ошибки ведут к перегреву частотника, выходу из строя силовых транзисторов или тиристоров.
  • Диапазон и точность регулирования. Интервал изменения частоты и точность ее задания должны соответствовать требованиям условий технологического процесса. Возможность изменения частоты у скалярных преобразователей 1:10, если требуется более широкий диапазон, необходим частотник с векторным управлением.
  • Электромагнитная совместимость. Частотный преобразователь чувствителен к электромагнитным помехам и сам является их источником. Выбор устройства осуществляется на основании условий его установки. При необходимости может потребоваться его установка в отдельном помещении, подключение специальных фильтров и использование экранированных кабелей. Компания «Данфосс» выпускает преобразователи, укомплектованные встроенными ЭМ-фильтрами.
  • Наличие функций отключения двигателя при перегреве, дисбалансе фаз, перегрузках, других аварийных и ненормальных режимов работы.
  • Наличие автоматизированного управления по событиям. Для синхронизации работы промышленного оборудования необходимы частотники, имеющие функции регулирования по достижению определенной величины технологических параметров.
  • Количество входов и выходов для подключения удаленных устройств управления и контроля. На случай модернизации САР или усложнения АСТП рекомендуется выбрать частотники с избыточным количеством аналоговых и дискретных разъемов. Для электроприводов автоматизированных систем рекомендуется подобрать частотный регулятор со встроенной памятью и функцией ведения журнала событий.
  • Номинальный ток и напряжение. Электрические параметры частотника должны соответствовать характеристикам электродвигателя.

Выбор частотного регулятора для промышленного оборудования делается на основании расчетов по специализированным методикам. Малейшие ошибки могут привести к авариям, которые могут иметь непредсказуемые последствия. Проектирование электропривода и выбор ПЧ целесообразно доверить специалистам по автоматизации. Правильный выбор частотника обеспечивает экономию электроэнергии до 40-50%, снижение затрат на ремонт и обслуживание электропривода и дает неплохой экономический эффект.

Принцип работы частотного преобразователя для асинхронного двигателя

Асинхронный двигатель изобретен достаточно давно и нашел широкое применение в различных областях благодаря простоте конструкции и надежности. Однако он имеет ряд недостатков, ключевыми из которых являются:

высокая пусковая мощность до момента выхода на рабочую частоту вращения;

низкий крутящий момент на старте;

квадратичная зависимость мощности от питающего напряжения;

предельная частота вращения для стандартной сети 50 Гц в 3000 об/мин.

Также штатно такой двигатель может работать только в одном направлении вращения. Все эти недостатки устраняются применением частотного преобразователя для управления асинхронным двигателем, использование которого обеспечивает:

плавный пуск и остановку;

возможность регулировки частоты вращения и повышение штатного числа оборотов в минуту;

смену направления вращения;

защиту двигателя от перегрузок и заклинивания оборудования;

точное поддержание заданной частоты вращения.

Несмотря на то, что это достаточно дорогостоящее оборудование, его применение оправдано как для решения промышленных задач, так и в быту, например, для управления насосом автономного водоснабжения или вентиляцией.

Как работает частотник для асинхронного двигателя

Несмотря на сложность схемотехнических решений, в том числе и с использованием микропроцессорного управления, принцип работы частотного преобразователя для асинхронного двигателя достаточно прост. Современные частотные преобразователи строятся по инверторной схеме с двойным преобразованием и работают по такому принципу:

входное одно- или трехфазное напряжение выпрямляется;

фильтруется от пульсаций и стабилизируется;

выпрямленное напряжение поступает на управляемые генераторы напряжения и частоты, которые формируют переменное выходное напряжение с заданными характеристиками;

режимом работы выходных генераторов управляет контроллер, построенный, как правило, на базе микропроцессора.

Таким образом, на вход питания двигателя подается не напряжение электросети с фиксированной частотой 50 Гц, а переменный ток с частотой, которую задает управляемый генератор частотного преобразователя. При этом частотник управляет не только частотой, но и напряжением, поэтому обеспечивается стабильный режим работы двигателя. В системе управления предусмотрена обратная связь, которая контролирует параметры выходного напряжения и его частоты на соответствие заданным. Также современные преобразователи могут иметь внешнюю обратную связь, которая контролирует параметры работы системы с асинхронным двигателем и оперативно изменяет режим его работы для поддержания, например, давления в системе подачи воды или скорости движения транспортера на заданном уровне.

Читайте также:  Принцип работы индикаторной отвертки

Потери на такое двойное преобразование у современных частотников составляют всего несколько процентов, а те возможности, которые они предоставляют по управлению электроприводами, значительно расширяют сферу применения асинхронных двигателей.

Устройство преобразователя частоты для асинхронного двигателя

Прежде чем разбираться с тем, что собой представляет преобразователь частоты, необходимо знать, что такое асинхронный двигатель. Итак, под асинхронным двигателем понимают техническое устройство, которое предназначено для того чтобы преобразовывать электрическую энергию в механическую. Устройство работает от электричества с переменным током. При этом необходимо отметить, что частота магнитного поля, созданного в результате тока статорной обмотки, не равна частоте вращения механизма. Итак, что же такое преобразователь частоты для асинхронного двигателя? Ознакомиться с обзором какие бывают светодиодные лампы для дома и как выбрать можно здесь.

Преобразователь частоты для асинхронного двигателя на фото

Принцип работы

В том случае, если регулировка асинхронного двигателя механическим методом привилегилирует, то стоит знать о том, что период эксплуатации устройства сократиться в несколько раз. Также не получится избежать потерь энергетического типа. Причина кроется в том, что показатель электрического тока будет выше номинального показателя используемого сетевого напряжения. А это условие недопустимо для стандартных (имеются ввиду нормальные условия) работы технического устройства.

Сам по себе принцип работы преобразователя частот предполагает использование управления электронного типа. Это не только оказывает влияние на мягкость пуска, но и позволяет плавно регулировать работу приводов. При этом всегда будет сделан акцент частотную характеристику статора и напряжения.

Еще учтена возможность регулирования работы устройства. Можно будет учесть даже регулировочные особенности каждого отдельного производителя.

Работает сам механизм по принципу двойного преобразования показателя напряжения:

  • Сетевое напряжение фильтруют и выпрямляют перед подачей на систему конденсаторов.
  • Потом используют электронное управление.

Выбор

При выборе преобразователя необходимо делать акцент на:

  • Тип управления механическим устройством – скалярный или векторный;
  • Уровень мощности устройства;
  • Диапазон сетевого напряжения;
  • Частотная характеристика;
  • Необходимо чтобы шина совпадала со схемой подключения преобразователя.

Еще стоит учитывать и перегрузочные особенности механизма. В том случае, если невероятно важны пиковые нагрузки, то стоит отдать предпочтение частотному преобразователь с показателем тока пикового типа на 10% выше первоначального. Обзор бытовых галогенных ламп и как выбрать здесь: https://howelektrik.ru/osveshhenie/lampy/galogenovye/bytovye-galogenovye-lampyobzor-i-kak-vybrat.html.

Виды и характеристики

На фото самодельный частотный преобразователь для асинхронного двигателя

  • самодельный вариант является самым распространённым. Его можно собрать собственными руками. Главное иметь соответствующие комплектующие и техническое оборудование. Очень важно следовать специальной схеме, иначе собранное устройство быстро выйдет из строя. Читайте как работает трансформатор для галогенных ламп и какой выбрать на этой странице.
  • частотный преобразователь для однофазного электродвигателя можно купить в магазине электрической техники. Все что требуется – это знать технические характеристики уже имеющегося асинхронного двигателя.

На снимке частотный преобразователь для однофазного электродвигателя

Преобразователь частоты для асинхронных двигателей SV ig5a на фото

Устройство цифрового преобразователя

Само устройство состоит из следующих элементов:

  • Обмотка двигателя;
  • Также имеются драйвера трехфазного моста;
  • Микроконтроллеры;
  • Программатор и транзисторы.
  • Для управления используются кнопки и жк-индикаторы.

На схеме указан принцип работы цифрового преобразователя

Схема

Для того чтобы частотный преобразователь можно было использовать для любого типа асинхронных двигателей. Необходимо собирать их в соответствии с определенными типовыми схемами. Только так можно получить одну систему и вариативность использования преобразователей и двигателей асинхронного типа.

Схема частотного преобразователя для трехфазного двигателя

Это так называемые схема частотного преобразователя для трехфазного двигателя и схема врезки или подключения частотного преобразователя к электродвигателю. Главное помнить о том, что от качества и правильности подключения зависит безопасность самого потребителя.

Схема врезки или подключения частотного преобразователя к электродвигателю

Стоимость

Приобрести частотный преобразователь для двигателя асинхронного типа можно как в специализированном магазине, так и у региональных дилеров. Стоимость оборудования данного типа варьируется в промежутке от 15 000 до 70 000 рублей. Читайте принцип работы микроволновой печи и устройство магнетрона.

Где купить преобразователь частоты для асинхронных двигателей?

  • ООО «ОвенКомплектАвтоматика» г.Москва, 1-й Вешняковский пр-д, д.2, Контактный телефон: (495) 709-79-09, (499) 784-44-70, (499) 784-44-80;
  • General centre г.Москва,127254, ул. Яблочкова, д.10а, рядом с м. Тимирязевская (5 минут пешком), Контактный телефон: +7 (499) 341-15-20;
  • Тоговая компания РусИнСнаб г. Москва поселок фабрики имени 1-го Мая Контактный телефон: +7 (926) 382-60-50
    1. Торговая компания Электро Северо-Запад, г. Санкт-Петербург, Петергофское шоссе, д. 73, Контактный телефон: +7 (812) 332-44-94;
    2. Лаборатория системной интеграции, г. Санкт-Петербург, Индустриальный пр., д. 44, офис 638А Контактный телефон: +7 (812) 937-78-55
    3. Телеконтроль, г. Санкт-Петербург, ул. Заставская, 7, БЦ «Мега парк, Контактный телефон: (812) 244-13-40, (495) 544-43-63.

    Видео

    Смотрите видео-ролик о трёхфазном преобразователе напряжения из асинхронного двигателя:

    Управлять асинхронным двигателем нелегко. Именно по этой причине следует сделать акцент на покупке преобразователя. Стоит выбирать только модели высокого качества. иначе каждый потребитель рискует «заплатить дважды». Перед непосредственной покупкой оборудование необходимо проверить.