Люминесцентные светильники; принцип работы

Люминесцентные светильники – принцип работы

Люминесцентные светильники представляют собой самый распространенный тип светильников для освещения административных зданий. В последнее время они находят применение и для освещения жилых зданий. При проектировании освещения светильники с люминесцентными лампами часто рассматриваются как основной тип используемых светильников.

В этой статье рассмотрены особенности светильников с люминесцентными лампами и возможности их приобретения в интернет магазинах.

Магазины люминесцентных светильников

Официальные сайты популярных интернет магазинов, в которых можно выбрать и купить люминесцентные и другие светильники, вы можете посмотреть на странице сайта Магазины светильников.

Также на этой странице рассмотрены некоторые особенности приобретения светильников в интернет магазинах.

Описание особенностей светильников

Источником света в таких светильниках является люминесцентная лампа, которая относится к широкому классу газоразрядных ламп, использующих свойство некоторых газов и паров металлов светиться в электрическом поле. Люминесцентная лампа представляет собой длинную тонкую стеклянную трубку, покрытую внутри люминофором. Трубка заполнена инертным газом, в который добавлены пары ртути. По краям трубки расположены катоды, представляющие собой вольфрамовые спирали (накалы) покрытые слоем оксида бария. Спирали подключены к штырькам, выходящим наружу и служащим для подключения лампы.

Люминесцентные лампы для малогабаритных светильников могут быть выполнены в виде кольца, спирали или иметь другую форму, позволяющую уменьшить габариты лампы.

Существует большое количество различных схем включения люминесцентных ламп. Рассмотрим принцип работы лампы на примере простейшей схемы со стартером и дросселем, показанной на Рис. 1. Дроссель и стартер представляют собой электромагнитную пускорегулирующую аппаратуру (ПРА).

Рис.1 Запуск люминесцентной лампы с использованием электромагнитного ПРА

При подаче напряжения на вход схемы практически все напряжение прикладывается к стартеру, представляющему собой неоновую лампочку, у которой электроды изготовлены из биметаллических пластин. Между пластинами неоновой лампочки возникает тлеющий разряд, разогревающий пластины. Под действием температуры пластины изгибаются и замыкаются между собой. Биметаллические пластины изготавливают путем соединения двух пластин из разнородных металлов, имеющих разный коэффициент линейного температурного расширения, вследствие чего нагрев приводит к изгибу таких соединенных пластин. После замыкания пластин оба накала люминесцентной лампы разогреваются проходящим по ним током. А пластины неоновой лампочки стартера остывают и размыкаются. В дросселе возникает переходной процесс, вызванный резким уменьшением проходящего по нему тока: между накалами люминесцентной лампы появляется импульс напряжения, значительно превышающий по величине напряжение питающей сети. В лампе возникает газовый разряд, сопровождающийся свечением, который уже поддерживается только электрическим полем между катодами. Дроссель ограничивает ток через лампу. Конденсатор С1 необходим для повышения коэффициента мощности светильника. Конденсатор С2 служит для подавления высокочастотных помех.

Выпускается большая номенклатура различных стартеров в зависимости от мощности ламп. В светильниках часто две люминесцентные лампы включают последовательно. Стартеры для такого включения имеют другое напряжение включения, чем используемые для одной лампы.

Разряд в лампе сопровождается ультрафиолетовым излучением, длина волны которого лежит за пределами видимого глазом света (примерно 254 нм). Это излучение возбуждает в люминофоре свечение с длинами волн видимого света. Ультрафиолетовое излучение практически полностью задерживается стенками стеклянной трубки.

Светильники с электромагнитными ПРА имеют ряд недостатков: дроссели, входящие в состав ПРА, сильно греются и гудят; низкий коэффициент мощности – доходящий до 0,5; светильники плохо включаются при пониженном, даже на 10%, напряжении сети; свечение ламп сопровождается мерцанием с частотой сети, что приводит к утомляемости глаз; возможно возникновение стробоскопического эффекта – зрительной иллюзии неподвижности вращающегося предмета.

Электромагнитные ПРА постепенно вытесняются электронными ПРА (ЭПРА), в которых все функции по запуску лампы и регулированию режимом ее работы выполняет электронная схема. В электронном ПРА напряжение с частотой 50 Гц преобразуется в напряжение с частотой в несколько десятков кГц. Для ограничения тока в лампе здесь также имеется дроссель, но на повышенной частоте потери мощности в нем пренебрежимо малы. Электронные ПРА позволяют уменьшить мерцание ламп и устранить стробоскопический эффект, повысить коэффициент мощности до 0,9 – 0,95, осуществлять плавное зажигание ламп и значительно увеличить продолжительность их работы. Специальные электронные ПРА позволяют диммировать люминесцентные светильники, изменяя их световой поток в широких пределах. Для таких ЭПРА вместо выключателя устанавливается специальный диммер, рассчитанный для работы с данным типом ЭПРА. Экономия электроэнергии при переходе от электромагнитных ПРА к электронным составляет 20 – 30%, а при использовании диммируемых светильников значительно больше. Поэтому при проектировании освещения чаще всего подбирают светильники именно с электронным ПРА. А компактные люминесцентные лампы (часто называемые энергосберегающими) для малогабаритных светильников содержат схему электронного ПРА внутри корпуса лампы.

Мерцание ламп и стробоскопический эффект в светильниках с электромагнитным ПРА можно существенно снизить при освещении больших помещений, в которых значительное количество светильников равномерно распределено по трем фазам электросети. При этом спад светового потока в светильниках одной фазы компенсируется повышением светового потока в других фазах. Подбирая светильники при проектировании освещения необходимо учитывать, что светильники с электронным ПРА имеют несравнимое преимущество, если в помещении предполагается установить небольшое количество светильников. Когда нет возможности распределить их равномерно по всем трем фазам электрической сети.

Принцип работы люминесцентной лампы и устройство прибора

Принцип работы люминесцентной лампы базируется на эффекте классической люминесценции.

Электрическим разрядом в ртутных парах создаётся ультрафиолетовое излучение, преобразуемое посредством люминофора в видимое свечение.

При самостоятельном подключении и ремонте таких осветительных приборов учитываются особенности устройства и принцип их действия.

Устройство люминесцентной лампы

Люминесцентная лампа относится к категории классических разрядных источников освещения низкого давления. Стеклянная колба такой лампы всегда имеет цилиндрическую форму, а наружный диаметр может составлять 1,2см, 1,6см, 2,6см или 3,8см.

Цилиндрический корпус чаще всего прямой или U-изогнутый. К торцевым концам стеклянной колбы герметично припаиваются ножки с электродами, выполненными из вольфрама.

Внешней стороной электроды подпаиваются к цокольным штырям. Из колбы осуществляется тщательное откачивание всей воздушной массы через специальный штенгель, расположенный в одной из ножек с электродами, после чего происходит заполнение свободного пространства инертным газом с ртутными парами.

Читайте также:  Электрический щиток в частном доме своими руками

Схема

Стандартная схема подключения люминесцентной лампы значительно сложнее, нежели процесс включения традиционной лампы накаливания.

Требуется применять особые пусковые устройства, качественные и мощностные характеристики которых оказывают непосредственное влияние на сроки и удобство эксплуатации осветительного прибора.

Схема подключения люминесцентных ламп без дросселя и стартера

В настоящее время практикуется несколько схем подключения, которые отличаются не только по уровню сложности выполняемых работ, но и набором используемых в схеме устройств:

  • подключение с применением электромагнитного балласта и стартера;
  • подключение с электронным пускорегулирующим аппаратом.

Второй вариант подключения предполагает генерирование высокочастотного тока, а сам непосредственный запуск и процесс работы осветительного прибора запрограммированы электронной схемой.

Схема подключения лампы с дросселем и стартером

Как загорается люминесцентная лампа?

Как работает люминесцентная лампа? Функционирование люминесцентного осветительного прибора обеспечивается следующими поэтапными действиями:

  • на электроды, расположенные на цокольных штырях, подаётся напряжение;
  • высокое сопротивление газовой среды в лампе провоцирует поступление тока через стартер с образованием тлеющего разряда;
  • ток, проходящий через электродные спирали, в достаточной степени прогревает их, а разогретые стартерные биметаллические контакты замыкаются, что прекращает разряд;
  • после остывания стартерных контактов происходит их полное размыкание;
  • самоиндукция вызывает возникновение импульсного напряжения дросселя, достаточного для включения освещения;
  • проходящий через газовую среду ток уменьшается, а полное отключение стартера обуславливается недостаточностью напряжения.

Основным назначением устанавливаемых конденсаторов является эффективное снижение помех. Входные конденсаторы обеспечивают существенное понижение реактивной нагрузки, что важно при необходимости получить качественное освещение и продлить срок службы прибора.

Для чего нужен дроссель в люминесцентной лампе

Дроссель позволяет обеспечить требуемый для полноценного функционирования лампы электрический импульс. Принцип такого дополнительного устройства основан на сдвиге фазы переменного тока, что способствует получению необходимого количества тока для горения паров, которыми наполнена внутренняя часть лампы.

В зависимости от уровня мощности, рабочие параметры дросселя и сфера его использования могут варьироваться:

  • 9 Вт — для стандартной энергосберегающей лампы;
  • 11 w и 15 w — для миниатюрных или компактных осветительных приборов и энергосберегающих ламп;
  • 18 w — для настольных осветительных приборов;
  • 36 Вт — для люминесцентного светильника с малыми показателями мощности;
  • 58 Вт — для потолочных светильников;
  • 65 Вт — для многоламповых приборов потолочного типа;
  • 80 Вт — для мощных осветительных приборов.

Принцип работы стартера люминесцентной лампы

Конструкция устройства представлена компактной стеклянной колбой, заполненной инертным газом. Колба установлена внутри металлического или пластикового корпуса, с парой электродов, один из которых относится к биметаллическому типу.

Напряжение на зажигание стартера не должно быть выше, чем номинальное напряжение питающей сети. В процессе подключения схемы запуска к питающей электросети, значительная часть напряжения переходит на разомкнутые стартерные электроды. Под воздействием напряжения обеспечивается образование тлеющего разряда, небольшая часть которого используется для разогрева биметаллических электродов.

Схема работы стартера

Результатом нагревания становится изгиб и замыкание электроцепи, с последующим прекращением тлеющего разряда внутри стартера. Проход тока по цепи последовательно соединенных дросселя и катодов вызывает их эффективный прогрев. Временем замкнутого состояния стартерных электродов определяется продолжительность прогрева катодов любой люминесцентной лампы.

Устройство и принцип работы люминесцентного светильника

Современные люминесцентные светильники относятся к категории наиболее распространенных типов надежных и долговечных осветительных приборов. Если до недавнего времени такие устройства использовались преимущественно в обустройстве освещения административных и офисных зданий, то в последние годы они всё чаще находят применение в жилых помещениях.

Источник света в таких видах светильников представлен люминесцентной или газоразрядной лампой, функционирующей благодаря свойству некоторых газообразных и парообразных веществ достаточно мощно светиться в условиях электрического поля.

Люминесцентные лампы, устанавливаемые в малогабаритные и компактные светильники, могут обладать кольцевидной, спиралевидной или любой другой формой, что положительно сказывается на габаритах осветительного прибора.

Выпускаемые лампы принято подразделять на линейные и компактные модели. Первый вариант имеет характерные отличия по длине, а также диаметру колбы. Компактные модели имеют, как правило, изогнутую трубку, а основные различия представлены типом цоколя.

Несмотря на кажущуюся простоту устройства, и несложный принцип работы люминесцентной лампы, чтобы продлить срок службы прибора и получить качественное освещение, важно строго соблюдать схему подключения и использовать комплектующие только от проверенных и хорошо зарекомендовавших себя производителей.

Видео на тему

Особенности люминесцентной лампы

Время на чтение:

Вот уже продолжительное время, весь мир напряженно думает о дополнительной экономии электрической энергии. Этому способствует использование энергосберегающих ламп, которые известны миру более 50 лет. Это достойная альтернатива традиционным лампам накаливания. Единственным спорным моментом является вопрос ее утилизации. Ниже предлагается рассмотреть, как устроена люминесцентная лампа, на что обратить внимание потенциальному покупателю.

Описание

Визуально люминесцентная лампа представляет собой стеклянную колбу. Как правило, выполняется в белом цвете, по краям выступают соответствующие контакты подключения. Форма может быть выполнена в виде:

  • Трубки или стержня
  • Тора
  • Спирали

Лампа в виде спирали

В процессе производства из колбы выкачивается воздух, после чего закачивается в конструкцию инертный газ. В результате действия электричества инертный газ приводит к последующему свечению самого изделия. При этом создаются потоки холодного, теплого света, последний называется «дневным». От этого и возникло второе название ламп. Лампа светить бы не могла, если на поверхность колбы с внутренней стороны не был нанесен люминофор. В самом изделии находится ртуть.

Внимание! Из-за наличия ртути в составе относительно актуальности использования лампы до сих пор не угасают многочисленные споры у экологов во всем мире.

Технические характеристики

Перед совершением покупки необходимо знать, какое напряжение на люминесцентной лампе и почему обязательно стоит обратить внимание на данный показатель при выборе изделия:

  • Накаливание мощностью 20 Вт будет соответствовать люминесцентной, мощностью 5-7 Вт.
  • Накаливание мощностью 40 Вт будет соответствовать люминесцентной, мощностью 10-13 Вт.
  • Накаливание мощностью 60 Вт будет соответствовать люминесцентной, мощностью 15-16 Вт.
  • Накаливание мощностью 75 Вт будет соответствовать люминесцентной, мощностью 18-20 Вт.
  • Накаливание мощностью 100 Вт будет соответствовать люминесцентной, мощностью 25-30 Вт.
  • Накаливание мощностью 150 Вт будет соответствовать люминесцентной, мощностью 40-50 Вт.
  • Накаливание мощностью 200 Вт будет соответствовать люминесцентной, мощностью 60-80 Вт.
Читайте также:  Что такое дифференциальный ток

Характеристики изделия

Достоинства и недостатки

К преимуществам данного изделия можно отнести энергоэффективность. Под данным определением принято понимать количество потребляемой во время эксплуатации светильником с подключенными люминесцентными лампами электрической энергии.

Внимание! Отмечается, что изделие куда выгоднее обычной лампы накаливания и может запросто использоваться в дальнейшем во время эксплуатации как альтернативный источник света.

Благодаря устройству светильника с люминесцентными лампами качество излучения в разы выше. При учете, что цветовая передача лампы накаливания сравнительно невысока, под действующим светом люминесцентной лампы можно запросто различать истинные цвета без искажений.

К достоинствам стоит отнести и долговечность. Они могут запросто обеспечивать свечение вплоть до 10000 часов.

Мягкий свет благоприятно влияет на зрение, при этом само освещение куда более комфортное, поскольку излучение равномерно распределено по всей поверхности изделия. К примеру, если взять лампу накаливания, то яркая спираль быстро вызывает усталость глаз.

К недостаткам относится зависимость от условий сети, а также определенное количество запусков. Выходит из строя, как правило, ранее заявленного производителем срока. Нельзя не отметить и наличие паров ртути в конструкции.

Преимущества использования

Принцип работы

Инертный газ необходим для обеспечения тлеющего разряда. Ртуть же является актуальным компонентом, который позволяет усиливать разряд. Люминофор потребуется для последующего преобразования ультрафиолетового света, что актуально в свете видимого спектра. Электроды потребуются в дальнейшем для подключения лампы в электрическую схему, создания соответствующих разрядов электронов.

Устройство и принцип работы

Как только напряжение подается на контакты, электроды начинают испускать электроны, которые, перемещаясь по колбе, создают разряд. Специально для этого, в схему дополнительно включают устройство, которое создает разовый электрический разряд, актуальный для старта свечения. Данное устройство носит название стартер фото, его задача сводится к тому, чтобы в кратковременном отрезке увеличивать силу тока примерно в 3-4 раза.

Внимание! Чтобы обеспечивать полноценный запуск, последующую работу люминесцентной лампы, потребуется дополнительное устройство, которое называется дросселем. Это название фактически устарело, но продолжает активно использоваться.

Область применения

Актуальным решением станет использование лампы для освещения жилых домов, а также медицинских, общественных и учебных заведений. Помимо этого, нашла широкое применение в спортивных, а также торговых комплексах, прочно войдя в жизнь каждого пользователя. Постепенно люминесцентные конструкции все же сумели вытеснить традиционные лампы накаливания.

Актуальными данные элементы стали по той причине, что по технико-экономическим показателям они значительно эффективнее обычных ламп накаливания. Традиционная лампочка в этом случае будет расходовать только 6-8% на выполнение освещения, остальная же энергия будет трансформироваться в нагрев. В данном случае стоит отметить, что у люминесцентных источников данный показатель будет на 80% выше, что и обеспечит выгоду от его последующей покупки. Могут обеспечивать создание разного спектра, как дневного, естественного, так и холодного или теплого. Это позволит без проблем разнообразить и украсить палитру интерьера.

Применение изделий

Помимо этого, они часто используются как источник контролируемого ультрафиолетового излучения, который отличается полезностью для жителей наиболее крупных мегаполисов. Их отличает продолжительность эксплуатации, доходит порой до 20000 часов, а также возможность легко устанавливать взамен неактуальных ламп накаливания.

Подключение к сети

Перед тем как выполнить подключение, стоит продумать разметку. Следует относиться к этому процессу с должным вниманием, ведь от этого во многом зависит качество последующей работы. Пометки необходимо делать в тех местах, где планируется установить как лампочку, так и выключатель. Выключатель ставится возле двери на высоте порядка 80-90 сантиметров от пола. Важно следить, чтобы при открытии двери выключатель не был перекрыт, чтобы оставался к нему полноценный доступ.

Подключение к светильнику

Внимание! Отмечаются маршруты последующей проводки, она должна идти непосредственно от выключателя и вплоть до распределительного элемента, после чего также нужно отметить и путь от лампочки до той же распределительной коробки или розетки.

Люминисцентные лампы на данный момент намного опережают по уровню энергоэффективности давно устаревшие лампы накаливания. Они прочно вошли в обиход как жителей квартир, так и владельцев промышленных зданий, чему способствует их широкая палитра спектра освещения и экономичность.

Как устроена люминесцентная лампа?

Люминесцентные лампы (ЛЛ) находят свое применение в самых разных областях деятельности человека. Изобретение этого источника света и организация массового производства позволили значительно улучшить качественные характеристики искусственного освещения и повысить энергетическую эффективность (коэффициент полезного действия) светильников, укомплектованных ЛЛ.

Последовательная замена неэффективных ламп накаливания на люминесцентные ускорилась с началом производства компактных ЛЛ. Самые современные на сегодня светодиодные источники света, несмотря на постоянное улучшение своих характеристик, пока не достигли некоторых параметров ЛЛ, например, по такому важному показателю, как цена. Исследования физических процессов, возникающих в газах при пропускании через них электрического тока, позволили физикам и инженерам разработать источник света, в корне отличающийся от ламп накаливания, доминировавших долгое время.

Трубчатая люминесцентная лампа

  1. Историческая справка
  2. Как устроена современная ЛЛ
  3. Специфика подключения ЛЛ
  4. Типы ЛЛ
  5. Преимущества и недостатки

Историческая справка

История создания люминесцентной лампы интересна и поучительна сама по себе. В процессе ее разработки появились дополнительно полезные и для других областей технологии: вакуумная откачка, получение разных по составу люминофоров и другие.

Сначала была изобретена вакуумная стеклянная трубка. В 1856 году немецкий изобретатель Генрих Гайслер изобрел вакуумный насос, позволивший удалять (откачивать) воздушную среду из стеклянной колбы. Впоследствии колба в виде прямолинейной трубки стала именоваться трубкой Гайслера.

На концы трубки припаивались металлические электроды для проведения экспериментов по пропусканию электрического тока либо через вакуум (остаточный газ в трубке), либо через различные газы, которые напускались после откачки воздуха. При достижении напряжения пробоя от одного электрода к другому начинал течь ток и возникало свечение слабой интенсивности, цвет которого менялся в зависимости от того, какой именно газ напускался взамен удаленного воздуха: двуокись углерода (для белого свечения) или азот (для розового).

Читайте также:  Dca на мультиметре

Экспериментальная лампа Гайслера

Далее французский физик Александр Беккерель в 1859 году предложил наносить на внутреннюю поверхность стеклянной трубки тонкий слой люминесцирующего слоя (люминофора), который начинал светиться в видимой области спектра при возбуждении атомов ультрафиолетовым (УФ) излучением.

В 1901 году американец Питер-Купер Хьюитт предложил добавлять ртуть, что существенно повысило яркость нового светового источника. ЛЛ была экономичней лампочек накаливания в 8 раз, но ее излучение имело сине-зеленый оттенок, придававший человеческим лицам жутковатый трупный цвет.

На основании этих результатов знаменитый американский изобретатель Томас Эдисон в 1907 году впервые запатентовал люминесцентную лампу с люминофором из вольфрамата кальция.

За год до Эдисона аналогичную лампу смог воспроизвести Даниэль Фарлан Мур, экспериментировавший с двуокисью углерода (СО2) и азотом (N2).

Ближе всего к современному варианту ЛЛ подошли в 1927 году немецкие изобретатели Эдмунд Джермер, Фридрих Мейер и Ганс Шпаннер. Первоначальной целью их исследований было получение источника УФ-излучения. После нанесения люминофора определенного состава лампа стала давать равномерный белый свет, что привело Э. Джермера к мысли о создании нового источника дневного света, комфортного для глаз человека.

Кроме этого инженеры значительно улучшили параметры ЛЛ, увеличив давление паров ртути. Получение соответствующего патента закрепило за Э. Джермером авторские права на базовые принципы устройства ЛЛ.

Люминесцентные лампы начали массово производиться и продаваться только в 1938 году, когда лампы четырех типоразмеров были обнародованы американской фирмой «General Electric», которая выкупила патенты и надолго получила почти монопольные права на освоение этого перспективного рынка.

Как устроена современная ЛЛ

Основной принцип действия современной люминесцентной лампы заключается в получении УФ-излучения с помощью пробоя газового промежутка между электродами и последующего преобразования этого излучения в видимый свет с помощью эффекта люминесценции в специальных фосфорсодержащих покрытиях, так называемых люминофорах. Варьируя состав люминофора, получают разные цвета видимого участка спектра, от синего до красного. На рисунке ниже схематично представлен разрез типичной ЛЛ.

Кроме указанных компонентов каждая лампа наполняется инертным газом (обычно это Ar) для увеличения ресурса вольфрамовых электродов. Наличие ртути (Hg) в небольшом количестве резко увеличивает светоотдачу из-за роста плотности тока, вызванного повышением концентрации электронов, появляющихся в результате ионизации атомом этого металла. Существуют версии ламп, в которых ртуть отсутствует, а УФ-излучение появляется только от ионизации атомов инертного газа. Световой поток таких светильников существенно меньше, но зато они безопасны при эксплуатации.

Принципиальная схема люминесцентной лампы

Специфика подключения ЛЛ

Для получения тока через лампу требуется произвести пробой промежутка газа, для чего подается напряжение порядка 1 000 вольт. Ток растет лавинообразно, сопротивление резко падает (отрицательное дифференциальное сопротивление), что может привести к разрушению (перегоранию) лампы. Чтобы предотвратить этот процесс, применяется устройство, называемое балластом (или балластником), с помощью которого ограничивают рост тока при достижении определенного уровня. Применяются два вида балластников:

  • электромагнитное пускорегулирующее устройство (ЭмПРА) – состоит из дросселя (активной нагрузки), последовательно подключенного в цепь лампы, и стартера, подключенного между нитями накала. Стартер представляет собой небольшую неоновую лампочку;
  • электронное пускорегулирующее устройство (ЭПРА) – это по сути плата с электронными деталями (диодами, транзисторами, динисторами, микросхемами).

В электронном варианте балластника отдельный стартер не нужен – его функции реализованы на общей плате. ЭПРА работает на высокой частоте (десятки кГц), что полностью устраняет эффект мерцания, присущий ЭмПРА.

Электромагнитный балласт

ЭПРА имеют ряд неоспоримых преимуществ:

  • небольшие геометрические размеры и вес;
  • отсутствие мерцания и шума от вибраций, поскольку устройства работают на высоких частотах;
  • быстрое включение ламп;
  • снижение тепловых потерь по сравнению с ЭмПРА;
  • значения коэффициента мощности – до 0,95 ;
  • наличие в устройствах нескольких вариантов защиты от короткого замыкания, что продлевает ресурс изделий и повышает безопасность.

Электронное пускорегулирующее устройство

Типы ЛЛ

  • Высокого давления – для использования в осветительных установках большой мощности и для применения вне помещений, для повышения устойчивости к низким внешним температурам, правда, колба лампы может нагреваться до 300 °С.

Для уличного освещения эти лампы имеют общее название ДРЛ (дуговая ртутная лампа). Они имеют большую мощность , но плохую цветопередачу. Поэтому сфера их применения ограничена. Основное отличие ДРЛ от трубчатой ЛЛ состоит в способе получения дугового разряда, требующего больших затрат электроэнергии.

ДРИ – это тоже дуговые ртутные лампы с добавками солей металлов (металлогалогеновые), имеют более высокую светоотдачу и могут давать цветовые оттенки. Этот тип светильников используется в архитектурной и рекламной подсветках.

Лампа ДРЛ

  • Низкого давления – для применения в быту и для освещения крупных общественных и производственных помещений. Значения давления инертного газа в диапазоне 300–400 Па. В маркировке этих люминесцентных ламп первые буквы означают следующее:
    • ЛБ – белый свет;
    • ЛД – дневной свет;
    • ЛХБ – холодный белый свет;
    • ЛТБ – теплый белый свет;
    • ЛДЦ – дневной свет с улучшенной цветопередачей.

Преимущества и недостатки

  • небольшая цена;
  • возможность получения различных оттенков белого цвета;
  • экономичное, по сравнению с лампами накаливания, энергопотребление;
  • незначительный нагрев поверхности лампы – не более 50 °С;
  • срок службы – до 8 000 часов. Лампы накаливания работают не более 2 000 часов;
  • световой поток – до 3 000 лм;
  • рассеянное, равномерное излучение по всей поверхности источника;
  • высокая световая отдача – до 85 лм/Вт;
  • большой выбор цветовых оттенков, не требующий применения дополнительных светофильтров.

  • большие габариты (особенно для линейных ЛЛ);
  • наличие ртути (до 5 мг на одну лампу), что требует обеспечения дополнительных мер безопасности при эксплуатации;
  • проведение дополнительных работ по утилизации по окончании срока службы;
  • неравномерный спектр у дешевых ламп;
  • медленное включение, вызванное требованием постепенного разогрева электродов;
  • повышенная чувствительность к влажности;
  • мерцание с удвоенной частотой питающего напряжения при использовании электромагнитных балластников;
  • медленный запуск (или его отсутствие) при пониженных температурах внешней среды. При повышенных температурах ( более 50 °С) также высока вероятность отказов.

Линейные ЛЛ