Принцип работы люминесцентной лампы и устройство прибора

Принцип работы люминесцентной лампы и устройство прибора

Принцип работы люминесцентной лампы базируется на эффекте классической люминесценции.

Электрическим разрядом в ртутных парах создаётся ультрафиолетовое излучение, преобразуемое посредством люминофора в видимое свечение.

При самостоятельном подключении и ремонте таких осветительных приборов учитываются особенности устройства и принцип их действия.

Устройство люминесцентной лампы

Люминесцентная лампа относится к категории классических разрядных источников освещения низкого давления. Стеклянная колба такой лампы всегда имеет цилиндрическую форму, а наружный диаметр может составлять 1,2см, 1,6см, 2,6см или 3,8см.

Цилиндрический корпус чаще всего прямой или U-изогнутый. К торцевым концам стеклянной колбы герметично припаиваются ножки с электродами, выполненными из вольфрама.

Внешней стороной электроды подпаиваются к цокольным штырям. Из колбы осуществляется тщательное откачивание всей воздушной массы через специальный штенгель, расположенный в одной из ножек с электродами, после чего происходит заполнение свободного пространства инертным газом с ртутными парами.

Схема

Стандартная схема подключения люминесцентной лампы значительно сложнее, нежели процесс включения традиционной лампы накаливания.

Требуется применять особые пусковые устройства, качественные и мощностные характеристики которых оказывают непосредственное влияние на сроки и удобство эксплуатации осветительного прибора.

Схема подключения люминесцентных ламп без дросселя и стартера

В настоящее время практикуется несколько схем подключения, которые отличаются не только по уровню сложности выполняемых работ, но и набором используемых в схеме устройств:

  • подключение с применением электромагнитного балласта и стартера;
  • подключение с электронным пускорегулирующим аппаратом.

Второй вариант подключения предполагает генерирование высокочастотного тока, а сам непосредственный запуск и процесс работы осветительного прибора запрограммированы электронной схемой.

Схема подключения лампы с дросселем и стартером

Как загорается люминесцентная лампа?

Как работает люминесцентная лампа? Функционирование люминесцентного осветительного прибора обеспечивается следующими поэтапными действиями:

  • на электроды, расположенные на цокольных штырях, подаётся напряжение;
  • высокое сопротивление газовой среды в лампе провоцирует поступление тока через стартер с образованием тлеющего разряда;
  • ток, проходящий через электродные спирали, в достаточной степени прогревает их, а разогретые стартерные биметаллические контакты замыкаются, что прекращает разряд;
  • после остывания стартерных контактов происходит их полное размыкание;
  • самоиндукция вызывает возникновение импульсного напряжения дросселя, достаточного для включения освещения;
  • проходящий через газовую среду ток уменьшается, а полное отключение стартера обуславливается недостаточностью напряжения.

Основным назначением устанавливаемых конденсаторов является эффективное снижение помех. Входные конденсаторы обеспечивают существенное понижение реактивной нагрузки, что важно при необходимости получить качественное освещение и продлить срок службы прибора.

Для чего нужен дроссель в люминесцентной лампе

Дроссель позволяет обеспечить требуемый для полноценного функционирования лампы электрический импульс. Принцип такого дополнительного устройства основан на сдвиге фазы переменного тока, что способствует получению необходимого количества тока для горения паров, которыми наполнена внутренняя часть лампы.

В зависимости от уровня мощности, рабочие параметры дросселя и сфера его использования могут варьироваться:

  • 9 Вт — для стандартной энергосберегающей лампы;
  • 11 w и 15 w — для миниатюрных или компактных осветительных приборов и энергосберегающих ламп;
  • 18 w — для настольных осветительных приборов;
  • 36 Вт — для люминесцентного светильника с малыми показателями мощности;
  • 58 Вт — для потолочных светильников;
  • 65 Вт — для многоламповых приборов потолочного типа;
  • 80 Вт — для мощных осветительных приборов.

Принцип работы стартера люминесцентной лампы

Конструкция устройства представлена компактной стеклянной колбой, заполненной инертным газом. Колба установлена внутри металлического или пластикового корпуса, с парой электродов, один из которых относится к биметаллическому типу.

Напряжение на зажигание стартера не должно быть выше, чем номинальное напряжение питающей сети. В процессе подключения схемы запуска к питающей электросети, значительная часть напряжения переходит на разомкнутые стартерные электроды. Под воздействием напряжения обеспечивается образование тлеющего разряда, небольшая часть которого используется для разогрева биметаллических электродов.

Схема работы стартера

Результатом нагревания становится изгиб и замыкание электроцепи, с последующим прекращением тлеющего разряда внутри стартера. Проход тока по цепи последовательно соединенных дросселя и катодов вызывает их эффективный прогрев. Временем замкнутого состояния стартерных электродов определяется продолжительность прогрева катодов любой люминесцентной лампы.

Устройство и принцип работы люминесцентного светильника

Современные люминесцентные светильники относятся к категории наиболее распространенных типов надежных и долговечных осветительных приборов. Если до недавнего времени такие устройства использовались преимущественно в обустройстве освещения административных и офисных зданий, то в последние годы они всё чаще находят применение в жилых помещениях.

Источник света в таких видах светильников представлен люминесцентной или газоразрядной лампой, функционирующей благодаря свойству некоторых газообразных и парообразных веществ достаточно мощно светиться в условиях электрического поля.

Люминесцентные лампы, устанавливаемые в малогабаритные и компактные светильники, могут обладать кольцевидной, спиралевидной или любой другой формой, что положительно сказывается на габаритах осветительного прибора.

Выпускаемые лампы принято подразделять на линейные и компактные модели. Первый вариант имеет характерные отличия по длине, а также диаметру колбы. Компактные модели имеют, как правило, изогнутую трубку, а основные различия представлены типом цоколя.

Несмотря на кажущуюся простоту устройства, и несложный принцип работы люминесцентной лампы, чтобы продлить срок службы прибора и получить качественное освещение, важно строго соблюдать схему подключения и использовать комплектующие только от проверенных и хорошо зарекомендовавших себя производителей.

Видео на тему

Устройство люминесцентной лампы и принцип работы

Применение светильников дневного света позволяет экономить электроэнергию по сравнению с использованием обыкновенных осветительных приборов накаливания. О принципе работы люминесцентной лампы необходимо знать специалистам, занятым работой с электричеством.

Историческая справка

Газоразрядная колба появилась еще в 1856 году и называлась трубкой Гейслера. Использование высоковольтной катушки позволило возбудить в ней свечение газа зеленого цвета. Через несколько лет предложено было покрыть внутреннюю поверхность колбы люминофором.

Изделия более яркого белого спектра появились лишь в 1926 году благодаря исследованиям Эдмунда Гермера. По своему устройству они уже стали похожи на те, которые можно видеть сегодня.

Устройство люминесцентной лампы

Для того чтобы понять принцип работы однолампового светильника, надо познакомиться с его схемой. Светильник состоит из следующих элементов:

  • стеклянная цилиндрическая трубка;
  • два цоколя с двойными электродами;
  • стартер, работающий на начальном этапе поджига;
  • электромагнитный дроссель;
  • конденсатор, подключенный параллельно питающей сети.

Колба изделия выполнена из кварцевого стекла. На начальном этапе ее изготовления из нее откачан воздух и создана среда, состоящая из смеси инертного газа и паров ртути. Последняя находится в газообразном состоянии за счет избыточного давления, созданного во внутренней полости изделия. Стенки покрыты изнутри фосфоресцирующим составом, он превращает энергию ультрафиолетового излучения в видимый человеческому глазу свет.

Читайте также:  Гильза для обжима проводов

К выводам электродов на торцах устройства подводится переменное напряжение сети. Внутренние вольфрамовые нити покрыты металлом, который при разогреве испускает со своей поверхности большое количество свободных электронов. В качестве таких металлов могут применяться цезий, барий, кальций.

Электромагнитный дроссель представляет собой катушку, намотанную для повышения индуктивности на сердечнике из электротехнической стали с большой величиной магнитной проницаемости.

Стартер работает на начальном этапе процесса тлеющего разряда, протекающего в газовой смеси. В его корпусе находятся два электрода, один из которых биметаллический, способный под действием температуры изгибаться и изменять свои размеры. Он выполняет роль замыкателя и размыкателя электрической цепи, в которую включен дроссель.

Принцип работы люминесцентного светильника

Как работает люминесцентная лампа? Сначала образуются свободно движущиеся электроны. Это происходит в момент включения питающего переменного напряжения в областях вокруг вольфрамовых нитей накаливания внутри стеклянного баллона.

Эти нити за счет покрытия их поверхности слоем из легких металлов по мере нагрева создают эмиссию электронов. Внешнего напряжения питания пока недостаточно для создания электронного потока. Во время движения эти свободные частицы выбивают электроны с внешних орбит атомов инертного газа, которым заполнена колба. Они включаются в общее движение.

На следующем этапе в результате совместной работы стартера и электромагнитного дросселя создаются условия для увеличения силы тока и образования тлеющего разряда газа. Теперь наступает время организации светового потока.

Движущиеся частицы обладают достаточной кинетической энергией, необходимой для перевода электронов атомов ртути, входящей в состав лампы в виде небольшой капли металла, на более высокую орбиту. При возвращении электрона на прежнюю орбиту высвобождается энергия в виде света ультрафиолетового спектра. Преобразование в видимый свет происходит в слое люминофора, покрывающего внутреннюю поверхность колбы.

Для чего нужен дроссель в люминесцентной лампе

Это устройство работает с момента старта и на протяжении всего процесса свечения. На разных этапах задачи, выполняемые им, различны и могут быть разделены на:

  • включение светильника в работу;
  • поддержание нормального безопасного режима.

На первом этапе используется свойство катушки индуктивности создавать импульс напряжения большой амплитуды за счет электродвижущей силы (ЭДС) самоиндукции при прекращении протекания переменного тока через ее обмотку. Амплитуда этого импульса напрямую зависит от величины индуктивности. Он, суммируясь с переменным сетевым напряжением, позволяет кратковременно создать между электродами напряжение, достаточное для разряда в лампе.

При созданном постоянном свечении дроссель выполняет роль ограничивающего электромагнитного балласта для цепи дуги с низким сопротивлением. Его цель теперь – стабилизация работы для исключения дугового замыкания. При этом используется высокое индуктивное сопротивление обмотки для переменного тока.

Принцип работы стартера люминесцентной лампы

Устройство предназначено для управления процессом запуска светильника в работу. При первоначальном подключении сетевого напряжения оно полностью прикладывается к двум электродам стартера, между которыми существует небольшой промежуток. Между ними возникает тлеющий разряд, в котором температура увеличивается.

Один из контактов, выполненный из биметалла, имеет возможность под действием температуры изменять свои размеры, изгибаться. В этой паре он выполняет роль подвижного элемента. Возрастание температуры приводит к быстрому замыканию электродов между собой. По цепи начинает протекать ток, это приводит к понижению температуры.

Через небольшой промежуток времени происходит разрыв цепи, что является командой для вступления в работу ЭДС самоиндукции дросселя. Последующий процесс был описан выше. Стартер понадобится только на этапе следующего включения.

Варианты исполнения

Существует большое разнообразие электролюминесцентных ламп, но все они могут иметь различие по:

  • форме исполнения;
  • виду балласта;
  • внутреннему давлению.

Форма исполнения может быть как у обычных люминесцентных ламп – линейная трубка либо трубка в виде латинской буквы U. К ним добавились компактные варианты, выполненные под привычный цоколь с использованием различных спиральных колб.

Балласт является приспособлением, стабилизирующим работу изделия. Электронный и электромагнитный виды являются самыми распространенными схемами включения.

Внутреннее давление определяет область использования изделий. В бытовых целях или общественных местах нашли применение лампы низкого давления или энергосберегающие образцы. В промышленных помещениях или местах с пониженными требованиями к цветопередаче используют экземпляры высокого давления.

Для оценки способности освещения применяют показатель мощности лампы и ее светоотдачи. Можно привести еще много различных параметров классификации и вариантов исполнения, но их количество постоянно увеличивается.

Как устроена люминесцентная лампа?

Люминесцентные лампы (ЛЛ) находят свое применение в самых разных областях деятельности человека. Изобретение этого источника света и организация массового производства позволили значительно улучшить качественные характеристики искусственного освещения и повысить энергетическую эффективность (коэффициент полезного действия) светильников, укомплектованных ЛЛ.

Последовательная замена неэффективных ламп накаливания на люминесцентные ускорилась с началом производства компактных ЛЛ. Самые современные на сегодня светодиодные источники света, несмотря на постоянное улучшение своих характеристик, пока не достигли некоторых параметров ЛЛ, например, по такому важному показателю, как цена. Исследования физических процессов, возникающих в газах при пропускании через них электрического тока, позволили физикам и инженерам разработать источник света, в корне отличающийся от ламп накаливания, доминировавших долгое время.

Трубчатая люминесцентная лампа

  1. Историческая справка
  2. Как устроена современная ЛЛ
  3. Специфика подключения ЛЛ
  4. Типы ЛЛ
  5. Преимущества и недостатки

Историческая справка

История создания люминесцентной лампы интересна и поучительна сама по себе. В процессе ее разработки появились дополнительно полезные и для других областей технологии: вакуумная откачка, получение разных по составу люминофоров и другие.

Сначала была изобретена вакуумная стеклянная трубка. В 1856 году немецкий изобретатель Генрих Гайслер изобрел вакуумный насос, позволивший удалять (откачивать) воздушную среду из стеклянной колбы. Впоследствии колба в виде прямолинейной трубки стала именоваться трубкой Гайслера.

На концы трубки припаивались металлические электроды для проведения экспериментов по пропусканию электрического тока либо через вакуум (остаточный газ в трубке), либо через различные газы, которые напускались после откачки воздуха. При достижении напряжения пробоя от одного электрода к другому начинал течь ток и возникало свечение слабой интенсивности, цвет которого менялся в зависимости от того, какой именно газ напускался взамен удаленного воздуха: двуокись углерода (для белого свечения) или азот (для розового).

Экспериментальная лампа Гайслера

Далее французский физик Александр Беккерель в 1859 году предложил наносить на внутреннюю поверхность стеклянной трубки тонкий слой люминесцирующего слоя (люминофора), который начинал светиться в видимой области спектра при возбуждении атомов ультрафиолетовым (УФ) излучением.

В 1901 году американец Питер-Купер Хьюитт предложил добавлять ртуть, что существенно повысило яркость нового светового источника. ЛЛ была экономичней лампочек накаливания в 8 раз, но ее излучение имело сине-зеленый оттенок, придававший человеческим лицам жутковатый трупный цвет.

Читайте также:  Магнитный пускатель принцип работы

На основании этих результатов знаменитый американский изобретатель Томас Эдисон в 1907 году впервые запатентовал люминесцентную лампу с люминофором из вольфрамата кальция.

За год до Эдисона аналогичную лампу смог воспроизвести Даниэль Фарлан Мур, экспериментировавший с двуокисью углерода (СО2) и азотом (N2).

Ближе всего к современному варианту ЛЛ подошли в 1927 году немецкие изобретатели Эдмунд Джермер, Фридрих Мейер и Ганс Шпаннер. Первоначальной целью их исследований было получение источника УФ-излучения. После нанесения люминофора определенного состава лампа стала давать равномерный белый свет, что привело Э. Джермера к мысли о создании нового источника дневного света, комфортного для глаз человека.

Кроме этого инженеры значительно улучшили параметры ЛЛ, увеличив давление паров ртути. Получение соответствующего патента закрепило за Э. Джермером авторские права на базовые принципы устройства ЛЛ.

Люминесцентные лампы начали массово производиться и продаваться только в 1938 году, когда лампы четырех типоразмеров были обнародованы американской фирмой «General Electric», которая выкупила патенты и надолго получила почти монопольные права на освоение этого перспективного рынка.

Как устроена современная ЛЛ

Основной принцип действия современной люминесцентной лампы заключается в получении УФ-излучения с помощью пробоя газового промежутка между электродами и последующего преобразования этого излучения в видимый свет с помощью эффекта люминесценции в специальных фосфорсодержащих покрытиях, так называемых люминофорах. Варьируя состав люминофора, получают разные цвета видимого участка спектра, от синего до красного. На рисунке ниже схематично представлен разрез типичной ЛЛ.

Кроме указанных компонентов каждая лампа наполняется инертным газом (обычно это Ar) для увеличения ресурса вольфрамовых электродов. Наличие ртути (Hg) в небольшом количестве резко увеличивает светоотдачу из-за роста плотности тока, вызванного повышением концентрации электронов, появляющихся в результате ионизации атомом этого металла. Существуют версии ламп, в которых ртуть отсутствует, а УФ-излучение появляется только от ионизации атомов инертного газа. Световой поток таких светильников существенно меньше, но зато они безопасны при эксплуатации.

Принципиальная схема люминесцентной лампы

Специфика подключения ЛЛ

Для получения тока через лампу требуется произвести пробой промежутка газа, для чего подается напряжение порядка 1 000 вольт. Ток растет лавинообразно, сопротивление резко падает (отрицательное дифференциальное сопротивление), что может привести к разрушению (перегоранию) лампы. Чтобы предотвратить этот процесс, применяется устройство, называемое балластом (или балластником), с помощью которого ограничивают рост тока при достижении определенного уровня. Применяются два вида балластников:

  • электромагнитное пускорегулирующее устройство (ЭмПРА) – состоит из дросселя (активной нагрузки), последовательно подключенного в цепь лампы, и стартера, подключенного между нитями накала. Стартер представляет собой небольшую неоновую лампочку;
  • электронное пускорегулирующее устройство (ЭПРА) – это по сути плата с электронными деталями (диодами, транзисторами, динисторами, микросхемами).

В электронном варианте балластника отдельный стартер не нужен – его функции реализованы на общей плате. ЭПРА работает на высокой частоте (десятки кГц), что полностью устраняет эффект мерцания, присущий ЭмПРА.

Электромагнитный балласт

ЭПРА имеют ряд неоспоримых преимуществ:

  • небольшие геометрические размеры и вес;
  • отсутствие мерцания и шума от вибраций, поскольку устройства работают на высоких частотах;
  • быстрое включение ламп;
  • снижение тепловых потерь по сравнению с ЭмПРА;
  • значения коэффициента мощности – до 0,95 ;
  • наличие в устройствах нескольких вариантов защиты от короткого замыкания, что продлевает ресурс изделий и повышает безопасность.

Электронное пускорегулирующее устройство

Типы ЛЛ

  • Высокого давления – для использования в осветительных установках большой мощности и для применения вне помещений, для повышения устойчивости к низким внешним температурам, правда, колба лампы может нагреваться до 300 °С.

Для уличного освещения эти лампы имеют общее название ДРЛ (дуговая ртутная лампа). Они имеют большую мощность , но плохую цветопередачу. Поэтому сфера их применения ограничена. Основное отличие ДРЛ от трубчатой ЛЛ состоит в способе получения дугового разряда, требующего больших затрат электроэнергии.

ДРИ – это тоже дуговые ртутные лампы с добавками солей металлов (металлогалогеновые), имеют более высокую светоотдачу и могут давать цветовые оттенки. Этот тип светильников используется в архитектурной и рекламной подсветках.

Лампа ДРЛ

  • Низкого давления – для применения в быту и для освещения крупных общественных и производственных помещений. Значения давления инертного газа в диапазоне 300–400 Па. В маркировке этих люминесцентных ламп первые буквы означают следующее:
    • ЛБ – белый свет;
    • ЛД – дневной свет;
    • ЛХБ – холодный белый свет;
    • ЛТБ – теплый белый свет;
    • ЛДЦ – дневной свет с улучшенной цветопередачей.

Преимущества и недостатки

  • небольшая цена;
  • возможность получения различных оттенков белого цвета;
  • экономичное, по сравнению с лампами накаливания, энергопотребление;
  • незначительный нагрев поверхности лампы – не более 50 °С;
  • срок службы – до 8 000 часов. Лампы накаливания работают не более 2 000 часов;
  • световой поток – до 3 000 лм;
  • рассеянное, равномерное излучение по всей поверхности источника;
  • высокая световая отдача – до 85 лм/Вт;
  • большой выбор цветовых оттенков, не требующий применения дополнительных светофильтров.

  • большие габариты (особенно для линейных ЛЛ);
  • наличие ртути (до 5 мг на одну лампу), что требует обеспечения дополнительных мер безопасности при эксплуатации;
  • проведение дополнительных работ по утилизации по окончании срока службы;
  • неравномерный спектр у дешевых ламп;
  • медленное включение, вызванное требованием постепенного разогрева электродов;
  • повышенная чувствительность к влажности;
  • мерцание с удвоенной частотой питающего напряжения при использовании электромагнитных балластников;
  • медленный запуск (или его отсутствие) при пониженных температурах внешней среды. При повышенных температурах ( более 50 °С) также высока вероятность отказов.

Линейные ЛЛ

Люминесцентные лампы. Устройство и принцип работы.

Люминесценция — излучение, которое не требует нагрева тел и может возникать в газообразных, жидких и твердых телах под действием, например, ударов электронов, движущихся со скоростями, достаточными для возбуждения.

Люминофоры — твердые или жидкие вещества, способные излучать свет под действием различного рода возбудителей.

В люминесцентных и ряде других типов газоразрядных ламп используют фотолюминесценцию — оптическое излучение, возникающее в результате поглощения телами оптического излучения, но с другой длиной волны.

Электрические лампы, в которых электроэнергия превращается в световую непосредственно, независимо от теплового состояния вещества, за счет люминесценции, называются люминесцентными.

В зависимости от давления газа в лампе бывают люминесцентные лампы низкого давления (ЛНД) и высокого давления.

Люминесцентные лампы — это газоразрядные лампы низкого давления, в которых возникающее в результате газового разряда невидимое для человеческого глаза ультрафиолетовое излучение преобразуется люминофорным покрытием в видимый свет (принцип работы люминесцентной лампы).

Читайте также:  Обозначение фазы и нуля

Устройство люминесцентных ламп.

Люминесцентная лампа представляет собой стеклянную герметически закрытую трубку, внутренняя поверхность которой покрыта тонким слоем люминофора. Из трубки удален воздух и в нее введены небольшое количество газа (аргона) и дозированная капля ртути.

Внутри трубки на ее концах, в стеклянных ножках, укреплены биспиральные электроды из вольфрама, соединенные с двухштырьковыми цоколями, служащими для присоединения лампы к электрической сети посредством специальных патронов. При подаче электрического тока к лампе между электродами возникает электрический разряд в парах ртути, в результате электролюминесценции паров лампа излучает свет.

И если раньше люминесцентные лампы выглядели в основном как длинные белые трубочки различной длины, то теперь повсеместно встречаются люминесцентные лампы с обычными цоколями для использования в стандартных светильниках и люстрах. Это так называемые энергосберегающие лампы, приобретающие все более широкое использование наряду с галогенными лампами и светодиодными светильниками.

Достоинства и преимущества люминесцентных ламп.

Основным преимуществом люминесцентных ламп по сравнению с лампами накаливания являются:

  • более высокий коэффициент полезного действия (15 – 20%);
  • высокая световая отдача и в несколько раз больший срок службы ламп (при затрате той же мощности достигается значительно большая освещенность по сравнению с лампами накаливания);
  • правильный выбор ламп по цветности может создать освещение, близкое к естественному;
  • благоприятные спектры излучения, обеспечивающие высокое качество цветопередачи;
  • люминесцентные лампы значительно менее чувствительны к повышениям напряжения, поэтому их экономично применять на лестничных клетках и в помещениях, освещаемых ночью, когда в сети напряжение повышено (очень чувствительные к повышениям напряжения лампы накаливания быстро перегорают);
  • малая себестоимость;
  • низкая яркость поверхности и ее низкая температура (до 50 °С).

Недостатки люминесцентных ламп

Основным недостатками люминесцентных ламп по сравнению с лампами накаливания являются:

  • сложность схемы включения;
  • ограниченная единичная мощность (до 150 Вт);
  • зависимость от температуры окружающей среды (при снижении температуры лампы могут гаснуть или не зажигаться);
  • значительное снижение светового потока к концу срока службы;
  • вредные для зрения пульсации светового потока;
  • акустические помехи и повышенная шумность работы;
  • при снижении напряжения в сети более чем на 10% от номинального значения лампа не зажигается;
  • дополнительные потери энергии в пускорегулирующей аппаратуре, достигающие 25 – 35% мощности ламп;
  • наличие радиопомех;
  • лампы содержат вредные для здоровья вещества, поэтому вышедшие из строя газоразрядные лампы требуют тщательной утилизации.

Принцип действия люминесцентных ламп.

Принцип действия люминесцентной лампы низкого давления основан на дуговом разряде в парах ртути низкого давления. Получающееся при этом ультрафиолетовое излучение преобразуется в видимое в слое люминофора, покрывающего внутренние стенки лампы. Лампы представляют собой длинные стеклянные трубки, в торцы которых впаяны ножки, несущие по два электрода, между которыми находится катод в виде спирали.

В трубку лампы введены пары ртути и инертный газ, главным образом аргон. Назначением инертных газов является обеспечение надежного загорания лампы и уменьшение распыления катодов. На внутреннюю поверхность трубки нанесен слой люминофора.

Если к электродам, вставленным в концы стеклянной трубки, которая заполнена разряженным инертным газом или парами металла, приложить напряжение из расчета не менее 500 – 2000в на 1 м длины трубки, то свободные электроны в полости трубки начинают лететь в сторону электрода с положительным зарядом. Когда к электродам приложено переменное напряжение, направление движения электронов изменяется с частотой приложенного напряжения. В своем движении электроны встречаются с нейтральными атомами газа, заполнителя полости трубки, и ионизируют их, выбивая электроны с верхней орбиты в пространство. Возбужденные таким образом атомы, вновь сталкиваясь с электронами, снова превращаются в нейтральные атомы. Это обратное превращение сопровождается излучением кванта световой энергии.

Цвета люминесцентных ламп.

Каждому инертному газу и парам металла соответствует свой спектральный состав излучаемого света:

  • трубки с гелием светятся светло-желтым или бледно-розовым светом;
  • трубки с неоном — красным светом;
  • трубки с аргоном — голубым светом.

Смешивая инертные газы или нанося люминофоры на поверхность разрядной трубки, получают различные оттенки свечения.

Люминесцентные лампы дневного и белого света выполняют в виде прямой или дугообразной трубки из обычного стекла, не пропускающего короткие ультрафиолетовые лучи. Электроды изготавливают из вольфрамовой проволоки. Трубку заполняют смесью аргона и паров ртути. Внутри поверхность трубки покрыта люминофором — специальным составом, который светится под воздействием ультрафиолетовых лучей, возникающих при электрическом разряде в парах ртути. Аргон способствует надежному горению разряда в трубке.

Утилизация люминесцентных ламп.

В свете современных тенденций мы стремимся экономить электроэнергию. Для этого мы покупаем энергосберегающие лампочки, которые, как правило, являются люминесцентными. При покупке люминесцентных энергосберегающих ламп надо ответственно подходить к вопросу их утилизации, так как они в своем составе содержать вещества, очень вредные для окружающей среды, в частности, ртуть.

Надо знать, понимать и помнить, что эти лампочки нельзя просто так выкинуть в мусорное ведро и вместе с остальным мусором отправить на мусорную свалку. Это преступное отравление экологической среды Вашего района. Такие лампы необходимо сдавать в специальные пункты утилизации.

Вы можете отнести энергосберегающие лампочки на утилизацию в свою управляющую компанию и сдать их туда совершенно бесплатно. Закон обязывает управляющие компании ставить у себя специальные контейнеры для сбора у населения токсичных ламп.

Наш дежурный электрик в Королеве сообщил, что специальный контейнер для передачи на утилизацию люминесцентных ламп стоит в гипермаркете “Глобус” на входе. Адрес магазина: г. Королев, ул. Коммунальная, д.1. Электрик в Щелково подтвердил, что в щелковском “Глобусе” также стоит контейнер для лампочек (адрес: г. Щелково, Пролетарский пр-т, д. 18). Такую же информацию мы получили от нашего мастера электрика в Пушкино: пушкинский “Глобус” на Ярославском шоссе также принимает лампочки на утилизацию. Лампочки, батарейки и ртутные градусники потом поступают в специальные пункты, с которыми у сети заключены соответствующие договоры.

А наш электрик в Сергиевом Посаде, который выезжал для проведения электромонтажных работ на одном из районных предприятий, так и не смог найти компанию по утилизации ламп в Сергиевом Посаде. Пришлось обращаться в московский пункт приема люминесцентных ламп.

Если материал этой статьи был для вас интересен и полезен, поделитесь им со своими знакомыми в социальных сетях. Возможно, кому-то эта информация очень пригодится. C уважением, Королевский электрик в Мытищах.