Что такое петля фаза-ноль простым языком; методика проведения измерения

Что такое петля фаза-ноль простым языком — методика проведения измерения

Электроприборы должны работать без нареканий, если электрическая цепь соответствует всем нормам и стандартам. Но в линиях электропитания происходят изменения, которые со временем сказываются на технических параметрах сети. В связи с этим необходимо проводить периодическое измерение показателей и профилактику электропитания. Как правило, проверяют работоспособность автоматов, УЗО, а также параметры петли фаза-ноль. Ниже описаны подробности об измерениях, какие приборы использовать и как анализировать полученные результаты.

Что подразумевается под термином петля фаза-ноль?

Согласно правилам ПУЭ в силовых подстанциях с напряжением до 1000В с глухозаземленной нейтралью необходимо регулярно проводить замер сопротивления петли фаза-ноль.

Петля фаза-ноль образуется в том случае, если подключить фазный провод к нулевому или защитному проводнику. В результате создается контур с собственным сопротивлением, по которому перемещается электрический ток. На практике количество элементов в петле может быть значительно больше и включать защитные автоматы, клеммы и другие связующие устройства. При необходимости, можно провести расчет сопротивления вручную, но у метода есть несколько недостатков:

  • сложно учесть параметры всех коммутационных элементов, в том числе выключателей, автоматов, рубильников, которые могли измениться за время эксплуатации сети;
  • невозможно рассчитать влияние аварийной ситуации на сопротивление.

Наиболее надежным способом считается замер значения с помощью поверенного аппарата, который учитывает все погрешности и показывает правильный результат. Но перед началом измерения необходимо совершить подготовительную работу.

Для чего проверяют сопротивление петли фаза-ноль

Проверка необходима для профилактических целей, а также обеспечения корректной работы защитных устройств, включая автоматические выключатели, УЗО и диффавтоматы. Результатом измерения петли фаза-ноль является практическое нахождение сопротивления силовой линии до автомата. На основе этого рассчитывается ток короткого замыкания (напряжение сети делим на это сопротивление). После чего делаем вывод: сможет ли автомат, защищающий данную линию отключиться при КЗ.

Например, если на линии установлен автомат C16, то максимальный ток КЗ может быть до 160 А, после чего он расцепит линию. Допустим в результате измерения получим значение сопротивления петли фазы-ноль равным 0,7 Ом в сети 220 В, то есть ток равен 220 / 0,7 = 314 А. Этот ток больше 160 А, поэтому автомат отключится раньше, чем начнут гореть провода и поэтому считаем, что данная линия соответствует норме.

Важно! Большое сопротивление является причиной ложного срабатывания защиты, нагрева кабелей и пожара.

Причина может заключаться во внешних факторах, на которые сложно повлиять, а также в несоответствии номинала защиты действующим параметрам. Но в большинстве случаев, дело во внутренних проблемах. Наиболее распространенные причины ошибочного срабатывания автоматов:

  • неплотный контакт на клеммах;
  • несоответствие тока характеристикам провода;
  • уменьшение сопротивления провода из-за устаревания.

Использование измерений позволяет получить подробные данные про параметры сети, включая переходные сопротивления, а также влияние элементов контура на его работоспособность. Другими словами, петля фаза-ноль используется для профилактики защитных устройств и корректного восстановления их функций.

Зная параметры автомата защиты конкретной линии, после проведения измерения, можно с уверенностью сказать, сможет ли автомат сработать при коротком замыкании или начнут гореть провода.

Периодичность проведения измерений

Надежная работа электросети и всех бытовых приборов возможна только в том случае, если все параметры соответствуют нормам. Для обеспечения нужных характеристик требуется периодическая проверка петли фазы-ноль. Замеры проводятся в следующих ситуациях:

  1. После ввода оборудования в эксплуатацию, ремонтных работ, модернизации или профилактики сети.
  2. При требовании со стороны обслуживающих компаний.
  3. По запросу потребителя электроэнергии.

Справка! Периодичность проверки в агрессивных условиях — не менее одного раза в 2 года.

Основной задачей измерений является защита электрооборудования, а также линий электропередач от больших нагрузок. В результате роста сопротивления кабель начинает сильно нагреваться, что приводит к перегреву, срабатыванию автоматов и пожарам. На величину влияет множество факторов, включая агрессивность среды, температура, влажность и т.д.

Какие приборы используют?

Для измерения параметров фазы используют специальные поверенные устройства. Аппараты отличаются методиками замеров, а также конструктивными особенностями. Наибольшей популярностью среди электриков пользуются следующие измерительные приборы:

  • М-417. Проверенное опытом и временем устройство, предназначенное для измерения сопротивления без отключения источника питания. Из особенностей выделяют простоту использования, габариты и цифровую индикацию. Прибор применяют в любых сетях переменного тока напряжением 380В и допустимыми отклонениями 10%. М-417 автоматически размыкает цепь на интервал до 0,3 секунды для проведения замеров.
  • MZC-300. Современное оборудование для проверки состояния коммутационных элементов. Методика измерений описаны в ГОСТе 50571.16-99 и заключается в имитации короткого замыкания. Устройство работает в сетях с напряжением 180-250В и фиксирует результат за 0,3 секунды. Для большей надежности работы предусмотрены индикаторы низкого или высокого напряжения, а также защита от перегрева.
  • ИФН-200. Устройство с микропроцессорным управлением для измерения сопротивления петли фаза-ноль без отключения питания. Надежный прибор гарантирует точность результата с погрешностью до 3%. Его используют в сетях с напряжением от 30В до 280В. Из дополнительных преимуществ следует выделить измерение тока КЗ, напряжения и угла сдвига фаз. Также прибор ИНФ-200 запоминает результаты 35 последних замеров.

Важно! Точность результатов измерения зависит не только от качества прибора, но и от соблюдения правил выполнения выбранной методики.

Как измеряется сопротивление петли фаза ноль

Измерение характеристик петли зависит от выбранной методики и прибора. Выделяют три основных способа:

  • Короткое замыкание. Прибор подключается к рабочей цепи в наиболее отдаленной точке от вводного щита. Для получения нужных показателей устройство производит короткое замыкание и замеряет ток КЗ, время срабатывания автоматов. На основе данных автоматически рассчитываются параметры.
  • Падение напряжения. Для подобного способа необходимо отключить нагрузку сети и подключить эталонное сопротивление. Испытание проводят с помощью прибора, который обрабатывает полученные результаты. Метод считается одним из наиболее безопасных.
  • Метод амперметра-вольтметра. Достаточно сложный вариант, который проводят при снятом напряжении, а также используют понижающий трансформатор. Замыкая фазный провод на электроустановку, измеряют параметры и делают расчеты характеристик по формулам.
Читайте также:  Какие бывают магнитные пускатели

Измерение петли фаза-ноль

  1. Петля Ф-Н — это измерение в электроустановках до 1000 В. Представляет из себя контур, соединяющий фазу и ноль.
  2. Необходимо для проверки качества монтажа и соответствия защитной автоматики сечению проводов.
  3. Периодичность — не реже 1 раза в 3 года.
  4. Обычно проводится без снятия напряжения.
  5. При помощи прибора ИФН или аналогичного измеряется ток короткого замыкания (КЗ) в самой отдаленной точке от распределительного щита.
  6. Ток КЗ должен быть больше номинала защитного устройства не менее чем в 3 раза.
  7. Протокол содержит номинал автомата, соответствующие измеренные значения и другие данные установленной формы.

1. Что такое петля фаза-ноль

В электрических установках напряжением до 1000 вольт с глухозаземленной нейтралью обязательна металлическая связь частей, подлежащих заземлению, с заземленной нейтралью электроустановки. Для таких установок должно быть измерено сопротивление петли, образованной при коротком замыкании фазы на корпус аппарата. Это сопротивление равно сумме полных сопротивлений фазового провода, фазы силового трансформатора и нулевого провода.

Цепь (петля) фаза-ноль в электроустановках с глухозаземленной нейтралью образуется при замыкании фазного провода с нулевым или корпусом электрооборудования. Обычно это происходит при повреждении изоляции электропроводки. В случае такой аварии устройства защиты (автоматические выключатели, предохранители) должны отключить электроустановку в кратчайшее время, обеспечивающее условия электробезопасности.

Петля фаза-ноль — это контур, состоящий из соединения фазного и нулевого проводника. Сопротивление петли фаза-ноль зависит от сечения жил кабеля, его протяженности, переходных сопротивлений в соединительных коробках данной линии. Измерения проводят на самом удаленном от аппарата защиты участке линии.

2. Зачем необходимо измерение

При повреждении электрооборудования или электропроводки от короткого замыкания, перегрузки, аппараты защиты должны мгновенно отключать поврежденный участок цепи.

Данное испытание необходимо для проверки соответствия уставки токовой отсечки автоматических выключателей, УЗО, дифавтоматов, реле и т.д. току короткого замыкания. То есть необходимо знать, отключит ли аппарат защиты поврежденную линию и за какое время. Это позволит проверить качество монтажа, подбор защитной автоматики и сечения проводов.

2.1. Периодичность проведения измерений

Замеры проводятся после выполнения монтажных и ремонтных работ. В дальнейшем профилактическая проверка производится не реже чем раз в 3 года.

По усмотрению ответственного за электрохозяйство испытания проводятся чаще.

3. Какие приборы используют?

  • М-417 — выпускался до 1985 года. Аналоговый прибор, время измерения устанавливается вручную. Измеряет сопротивление петли, ток короткого замыкания необходимо рассчитывать.
  • Щ 41160 – выпускался на замену М-417. Цифровой прибор, измеряет ток короткого замыкания. Время протекания измерительного тока не более 10 мс., перерыв до повторного включения не менее 15 минут.
  • MZC-300 – измеряет полное сопротивление петли фаза-ноль, автоматически вычисляет ток короткого замыкания. Время протекания тока 30 мс. Достоверность показаний гарантируется только при применении фирменных соединительных проводов.
  • ИФН-200 – имеет характеристики, аналогичные МZС-300. Дополнительно позволяет измерять переходное сопротивление контактных соединений. Можно применять провода произвольной длины. Встроенная память на 35 измерений.
  • ИФН-300 – выпускается на замену ИФН-200. Дополнительно измеряет сопротивление петли фаза-фаза. Встроенная память на 10 000 измерений.

4. Порядок измерения петли фаза-ноль

Измерение сопротивления цепи фаза-ноль может проводиться со снятием и без снятия напряжения. В большинстве случаев выполняются без снятия напряжения.

Измерения без снятия напряжения могут выполняться:

  • В режиме дополнительной нагрузки. Замыкание цепи фаза-ноль происходит через дополнительную нагрузку. При этом измеряются падение напряжение и ток, проходящий через нагрузку и вычисляется сопротивление петли.
  • В режиме кратковременного замыкания цепи. Время замыкания составляет несколько миллисекунд. Этот способ реализован в большинстве современных приборов.

4.1. Методика измерения

Измерение характеристик петли зависит от выбранной методики и используемого прибора. Наиболее часто применяются приборы, измеряющие непосредственно сопротивление петли фаза-ноль с дальнейшим вычислением прогнозируемого тока короткого замыкания. Например, с помощью ИФН-200.

Прибор подключается к рабочей цепи в наиболее отдаленной точке от вводного щита. При отсутствии возможности определить самую дальнюю точку линии, измерения выполняются по всем или нескольким точкам данной линии. Далее по полученным значениям производится сравнение тока возможного короткого замыкания с характеристиками аппарата защиты.

4.2. Выводы о результатах

Результаты измерений сопротивления петли фаза-ноль заносятся в протокол. Это позволяет сохранить результаты и использовать их для сравнения в будущем.

Согласно п. 28.4. прил. 3.1 ПТЭЭП ток короткого замыкания должен превышать не менее чем:

  • в 3 раза плавкую вставку ближайшего предохранителя;
  • в 3 раза номинальный ток нерегулируемого расцепителя или уставку тока регулируемого расцепителя автоматического выключателя, имеющего обратно зависимую характеристику.

4.3 Форма протокола

В отчете отражается:

  1. Участок цепи (группа в распределительном щите).
  2. Тип автомата защиты и номинальные токи ( в амперах) теплового и электромагнитного расцепителей.
  3. Измеренное значение сопротивления петли (если прибор его измеряет) на линиях A (L1), B (L2), C (L3).
  4. Измеренное значение тока короткого замыкания (если прибор его измеряет) на линиях A (L1), B (L2), C (L3).
  5. Допустимые коэффициенты срабатывания защиты для теплового и электромагнитного расцепителя. Для автомата с характеристикой С это 3 и 10.
  6. Фактический коэффициент срабатывания защиты. Отношение измеренного тока к номинальному току автомата.
  7. Соответствие фактического коэффициента допустимым. Если рассчитанное в п. 6 значение больше 10 то автомат отключится меньше чем за 0,1 секунды. Если меньше 10 но больше 3, время отключения сложно определить. Оно будет в интервале 0,1 — 30 секунд.

Зная параметры автомата защиты конкретной линии, после проведения измерения, можно с уверенностью сказать, сможет ли автомат сработать при коротком замыкании или возможно возгорание проводов.

В конце составленной формы подводятся итоги испытания. При отсутствии замечаний в заключении указывается возможность дальнейшей эксплуатации сети без принятия дополнительных мер, а при наличии — список необходимых действий.

Читайте также:  Узо или диф

Своевременный поиск проблемных участков линий электропитания позволяет принимать профилактические меры. Это не только делает работу электроустановки более безопасной, но и увеличивает срок эксплуатации сети.

Сопротивление цепи фаза – ноль

В статье рассмотрены метод расчета сопротивления цепи фаза – ноль в электроустановках напряжением до 1000 В с глухозаземленной нейтралью и правила вычисления тока короткого замыкания в линии, что позволяет проверить согласование параметров цепи с характеристиками аппаратов защиты при проектировании электроустановки. Приведенные в статье данные предназначены в первую очередь для расчетов распределительных и групповых сетей.

Для выполнения расчетов токов короткого замыкания в трансформаторных подстанциях необходимо дополнительно учитывать тип, мощность, схему подключения, и напряжение на входе трансформатора. Поэтому использование данной работы для расчета трансформаторных подстанций позволит лишь приблизительно оценить их параметры.

В общем случае сопротивление цепи фаза ноль RLN равно:

где Zт/3 – сопротивление трансформатора, Ом; RΣпер – суммарное переходное сопротивление контактов, Ом; RΣавт –суммарное сопротивление всех автоматических выключателей, Ом; Rn– удельное сопротивление n-го участка цепи Ом/км (по таблице 1); Ln – длина n-го участка цепи, км; Rдуги – сопротивление дуги в месте короткого замыкания, Ом.

Сопротивления кабелей и отдельно фазных и нулевых жил различных сечений при температуре +65 градусов приведены в таблице 1. Данная температура жил соответствует работе кабеля при номинальной нагрузке. В таблице 1 не учтены индуктивные составляющие сопротивлений, которые в кабелях пренебрежимо малы. При этом следует иметь ввиду, что при использовании проводов индуктивное сопротивление сети может иметь соизмеримую величину с активным сопротивлением жил, особенно при увеличении расстояния между проводами.

В таблице 2 приведены сопротивления трансформатора 10 (6) кВ при вторичном напряжении 400/230 В для случая соединения обмоток по схеме «треугольник-звезда». При соединении обмоток трансформатора по схеме «звезда-зигзак» оценить сопротивление трансформатора также можно по этой таблице. При соединении обмоток по схеме «звезда-звезда» сопротивление трансформатора в 3 – 3,5 раза больше, поэтому это соединение используется реже.

В таблице 3 приведены ориентировочные величины сопротивлений автоматических выключателей (по данным каталога по модульным выключателям АВВ).

Переходные сопротивления контактов, как правило, вносят несущественную часть в общее сопротивление цепи фаза – ноль. Но при большом количестве контактов их сопротивление необходимо учитывать. Переходное сопротивление болтовых соединений, как правило, мало и не превышает величины сопротивления 1 метра подключаемого кабеля (при подключении кабелей больших сечений переходное сопротивление контактов соответственно меньше, чем у кабелей меньшего сечения). Переходное сопротивление различных контактных колодок и сжимов, используемых в групповых сетях, для расчетов можно принять равным 0,01 Ом.

Активное сопротивление дуги в месте короткого замыкания в значительной степени зависит от мощности и схемы подключения трансформатора, длины и сечения кабелей, а также в большой степени от длины дуги. Ориентировочные значения сопротивления дуги в зависимости от величины сопротивления цепи фаза – ноль цепи приведены в таблице 4. С большим количеством графиков зависимостей сопротивления дуги от мощности трансформатора, длины и сечения кабелей, можно ознакомиться в ГОСТ 28249-93.

Сечение фазных жил мм 2

Сечение нулевой жилы мм 2

Полное сопротивление цепи фаза – ноль, Ом/км при температуре жил кабеля +65 градусов

Мощность трансформатора, кВ∙А

Сопротивление трансформатора, Zт/3, Ом (Δ/Υ)

I ном. авт. выкл, А

При проектировании групповой сети, если питающая и распределительная сеть уже проложены, целесообразно выполнить измерение сопротивления цепи фаза – ноль от трансформатора до шин группового щита. Это может значительно уменьшить вероятность ошибок при расчетах групповой сети. В этом случае сопротивление рассчитываем по формуле:

где, Rрасп – измеренное сопротивление цепи фаза – ноль линии, подключаемой к вводному автоматическому выключателю группового щитка, Ом; Rпер.гр – сопротивление переходных контактов в групповой линии, Ом; Rавт.гр – суммарное сопротивление автоматических выключателей – вводного группового щита и отходящей групповой линии, Ом; Rnгр – удельное сопротивление кабеля n-й групповой линии (по таблице 1), Ом/км; Lnгр – длина n-й групповой линии, км.

Рассмотрим процесс вычисления сопротивления цепи фаза – ноль схемы, показанной на Рис.1 при однофазном коротком замыкании фазы на ноль в конце групповой линии.

– трансформатор мощностью 630 кВ∙А подключен по схеме «треугольник – звезда» – по таблице 2 находим Zт/3=0,014 Ом;

– питающая сеть – кабель с алюминиевыми жилами длиной 80 метров имеет фазный проводник 150 мм 2 и нулевой – 50 мм 2 . По таблице 1 находим удельное сопротивление кабеля 0,986 Ом/км. Вычисляем его сопротивление (длины кабелей выражаем в километрах): 0,986 Ом/км∙0,08 км=0,079 Ом;

– распределительная сеть – кабель с медными жилами длиной 50 метров и сечением жил 35 мм 2 . По таблице 1 находим удельное сопротивление кабеля 1,25 Ом/км. Вычисляем его сопротивление:

1,25 Ом/км∙0,05 км=0,0625 Ом;

– групповая сеть – кабель с медными жилами длиной 35 метров и сечением жил 2,5 мм 2 . По таблице 1 находим удельное сопротивление кабеля 17,46 Ом/км. Вычисляем его сопротивление:

17,46 Ом/км∙0,035 км=0,61 Ом;

– автоматический выключатель отходящий линии – 16 Ампер (с характеристикой срабатывания «С»), вводной автоматический выключатель группового щитка 32 Ампера, остальные автоматические выключатели в линии имеют номинальный ток более 50 Ампер. Вычисляем их сопротивление (по таблице 3) 0,01 Ом+0,004 Ом+3∙0,001 Ом=0,017 Ом;

– переходные сопротивления контактов учтем только в групповой линии (точки подключения кабеля групповой линии к щитку и к нагрузке). Получаем 2∙0,01 Ом=0,02 Ом.

Суммируем все полученные значения и получаем сопротивление цепи фаза – ноль без учета сопротивления дуги RLN=0,014+0,079+0,0625+0,61+0,017+0,02=0,80 Ом.

Из таблицы 4 берем сопротивление дуги 0,075 Ом, и получаем окончательное значение искомой величины RLN=0,80 Ом+0,075 Ом=0,875 Ом.

Читайте также:  Замер силы тока мультиметром

В Правилах устройства электроустановок (ПУЭ) задано наибольшее время отключения цепей при коротком замыкании в сетях с глухозаземленной нейтралью 0,2 секунды при напряжении 380 В и 0,4 секунды при напряжении 220В.

Для обеспечения заданного времени срабатывания защиты необходимо, что бы при коротком замыкании в защищаемой линии возникал ток, превышающий не менее чем в 3 раза номинальный ток плавкой вставки ближайшего предохранителя (для взрывоопасных помещений не менее чем в 4 раза) и не менее чем в 3 раза ток расцепителя автоматического выключателя, имеющего обратнозависимую от тока характеристику (для взрывоопасных помещений не менее чем в 6 раз). Для автоматических выключателей с комбинированным расцепителем (имеющим тепловой расцепитель для защиты от перегрузок и электромагнитный расцепитель для защиты от токов коротких замыканий) ток короткого замыкания должен превысить ток срабатывания электромагнитного расцепителя не менее, чем в 1,2 – 1,25 раза.

В настоящее время используются автоматические выключатели с различной кратностью токов срабатывания электромагнитного расцепителя к тепловому. Автоматические выключатели группы «В» имеют кратность в пределах от 3 до 5, группы «С» от 5 до 10, группы «D» от 10 до 20, группы «K» от 10 до 15 и группы «Z» от 2 до 3. При расчетах всегда берется максимальное значение кратности токов срабатывания расцепителей. Например для автоматического выключателя С16, ток короткого замыкания должен быть не менее 16 А∙10∙1,2=192 А (для автоматического выключателя С10 не менее10А∙10∙1,2=120 А и для С25 не менее 25 А∙10∙1,2=300 А). В приведенном выше примере мы получили сопротивление цепи фаза – ноль 0,875 Ом. При таком сопротивлении цепи ток короткого замыкания Iкз составит величину

Uф/ RLN=220В/0,875 Ом=251 А. Следовательно групповая линия в приведенном примере защищена от токов коротких замыканий.

Максимальное сопротивление цепи фаза – ноль для автоматического выключателя С16 составит величину 220 В/192А=1,14 Ом. В приведенном примере сети (Рис. 1) сопротивление цепи от трансформатора до шин группового щита составит 0, 875 Ом – 0,61 Ом=0.265 Ом. Следовательно максимально возможное сопротивление кабеля групповой линии будет равно 1,14 Ом – 0, 265 Ом=0,875 Ом. Его максимальную длину L при сечении жил кабелей 2,5 мм 2 определим при помощи таблицы 1.

L, км=0,875 Ом/(17,46 Ом/км)=0,050 км.

Всегда, когда есть возможность, следует рассчитывать групповую сеть с максимальным запасом по сопротивлению цепи фаза – ноль, особенно розеточную сеть. Часто нагрузки (утюг, чайник и другие бытовые приборы), в которых часто происходят замыкания, подключают к розетке через удлинитель. Начиная с определенной длины провода удлинителя, нарушается согласование параметров цепи с характеристиками аппаратов защиты, то есть ток короткого замыкания оказывается недостаточным для мгновенного отключения сети. Отключение аварийного участка осуществится только тепловым расцепителем через сравнительно большой промежуток времени (несколько секунд), в результате чего кабели могут нагреться до недопустимо высоких температур вплоть до воспламенения изоляции.

Проект электропроводки должен быть выполнен таким образом, что бы даже в случае воспламенения изоляции кабеля при коротком замыкании это не приводило к пожару. Именно поэтому возникли требования к прокладке скрытой электропроводки в стальных трубах в зданиях со строительными конструкциями, выполненными из горючих материалов. Во взрывоопасных зданиях целесообразно использовать более сложную защиту кабелей от воздействия токов короткого замыкания.

Сопротивление петли фаза ноль

&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp Секретарь:

Зачем производят измерение сопротивления петли фаза-ноль

Кратко, сопротивление петли фаза-ноль измеряют для определения поведения защитных автоматов при возникновении короткого замыкания. Короткое замыкание возникает при механическом повреждении кабеля или разрушении изоляции кабеля в результате старения. В электроустановках с заземленной нейтралью нулевой проводник связан с нейтралью трансформатора. Нейтраль трансформатора объединена с контуром заземления. При замыкании фазы на фазу, на корпус или ноль получается электрическая цепь. Такую цепь называют петля фаза-ноль. При межфазном замыкании ток в контуре будет больше, чем при однофазном замыкании. Сопротивление петли фаза-ноль должно быть как можно более маленьким, тогда ток короткого замыкания в петле будет наибольшим и защита сработает быстрее. Измерение петли фаза-ноль и токов коротких фазных замыканий проводится для определения времени срабатывания защитных устройств. По полученному значению сопротивления петли фаза-ноль расчетом получают значение тока короткого замыкания. От величины тока зависит время отработки аппарата защиты. В качестве аппарата защиты обычно выступает автоматический выключатель. Время срабатывания автомата должно удовлетворять требованиям правил устройства электроустановок. Если это время не выходит за рамки 5 секунд для 380 Вольт и 0,4 секунд для 220 Вольт, то грубо защиту линии можно считать достаточной. Автоматическое отключение питания должно обеспечить защиту от поражения электрическим током при косвенных прикосновениях и коротких замыканиях. Чем быстрее сработает автоматический выключатель, тем меньшие повреждения будут нанесены людям и проводке в электроустановке, ведь при коротком замыкании мгновенно повышается значение тока, и температура проводника резко возрастает. При этом начинает плавиться и гореть изоляция. Даже нескольких секунд в простое срабатывания защиты может хватить для повреждения и возгорания десятков метров кабеля, так как от поврежденного кабеля воспламеняются соседние кабели. В последнее время при монтаже используют негорючий кабель, что помогает от возникновения пожаров, но не спасает проводку от повреждения, а помещения от задымления. При желании можно использовать и малодымный кабель, но финансовые условия не всегда позволяют это сделать. На сопротивление петли фаза-ноль влияет длинна линии, сечение проводников линии, способ соединения участков линии, качество прокладки линии, количество болтовых соединений. Вместе с проверкой самих аппаратов защиты измерение фаза-ноль дает хороший результат в обеспечении безопасности электроустановки.

© Все материалы защищены законом РФ об авторских правах и ГК РФ. Запрещено полное копирование без разрешения администрации ресурса. Разрешено частичное копирование с прямой ссылкой на первоисточник. Автор статьи: коллектив инженеров ОАО «Энергетик ЛТД»