Как пользоваться омметром

Омметр

Приборы для измерения сопротивления

Стоит открыть любой учебник по электротехнике и сразу выясняется, что практически все электротехнические величины названы в честь великих физиков прошлого: Вольт, Ампер, Генри, Ом, Фарада, Тесла, Герц. Конечно, обидно, что российских физиков в этом списке нет.

Немецкий физик Георг Ом первый ввёл понятие сопротивления. В его честь единицу измерения сопротивления стали называть «Ом». Эта величина изображается греческой буквой омега – Ω.

Раньше радиоэлементы так и назывались «сопротивление» и лишь много позже в обиход вошло слово резистор. До введения маркировки с помощью цветных полосок все необходимые данные наносились непосредственно на корпус резистора. В технической литературе можно встретить такие обозначения: килоом и мегаом, что означает соответственно тысяча ом и миллион ом. На принципиальных схемах рядом с обозначением резистора можно встерить надписи: 4К7 – четыре и семь килоома (4,7 кОм) или 1М2 – один и два мегаома (1,2 МОм). На зарубежных схемах «Ом» пишется как «Ohm».

Для измерения сопротивлений используется прибор, который называется Омметр. Приборы, измеряющие только сопротивление, в радиолюбительской практике обычно не используются. Такие высокоточные приборы применяются на заводах выпускающих резисторы для определения номинала с определённой погрешностью или в научно-исследовательских лабораториях.

Зато все знают такое понятие как тестер или мультиметр. Такие приборы объединяют в себе вольтметр, амперметр и омметр + ещё функционал дополняется возможностью проверки диодов или же измерения температуры. Всё зависит от стоимости и исполнения прибора. Мультиметры бывают стрелочные и цифровые. Каждый из них имеет свои особенности, достоинства и недостатки.

На принципиальных схемах омметр обозначается следующим условным графическим обозначением.

Стоит понимать, что так обозначается прибор целиком. В реальности же омметр также собран из достаточно большого количества радиодеталей, и его принципиальная схема включает в себя немалое количество элементов. Данное условное обозначение применяется в основном для того, чтобы показать, на каком участке схемы и каким прибором необходимо проводить измерение. Вот пример.

Здесь на схеме показано, как нужно замерять сопротивление звуковой катушки динамика. Из схемы видно, что кроме омметра (измерительного прибора) и самого динамика ничего не нужно.

Как уже говорилось, омметр, как правило, входит в состав мультиметра. Исключение составляют только узкоспециализированные и высокоточные приборы для измерения сопротивления. Они стоят довольно дорого и их могут позволить себе только крупные фирмы и исследовательские лаборатории.

Омметр в составе тестера-мультиметра используется как вспомогательный. Прежде всего, им можно проверять исправность транзисторов и диодов, а при небольшом навыке стабилитронов и тиристоров. Омметр незаменим при поиске самых главных неисправностей электронных схем:

Короткое замыкание, где его быть не должно.

Обрыв там, где должна быть замкнутая цепь.

Конечно, омметром проверяются обмотки трансформаторов, электродвигателей. Несложно проверить электролитические конденсаторы большой ёмкости, но только на исправность. На утечку проверить электролит не удастся.

О стрелочных измерительных приборах…

Стрелочные приборы в настоящее время применяются редко ввиду большой погрешности, ограниченной функциональности и необходимости расчёта результатов показаний. Кроме того, стрелочные приборы время от времени требуют калибровки.

Стоит отметить, что стрелочные омметры устроены проще своих цифровых собратьев. Ранее, ещё до широкого распространения цифровых мультиметров, в ходу у радиолюбителей были так называемые авометры. Авометр – это стрелочный многофункциональный прибор, который в одном корпусе объединяет три прибора для измерения основных электрических величин: амперметр – измеряет силу тока, вольтметр – измеряет напряжение и омметр – измеряет сопротивление. Как видим, название авометра происходит от названий тех приборов, которые входят в его состав.

Стоит отметить, что для стрелочных приборов, таких как амперметр и вольтметр не нужен источник питания (батарейка), а омметр обязательно требует наличие батареи питания.

Дело тут в том, что стрелочные приборы амперметр и вольтметр измеряют такие величины, как ток и напряжение на рабочих, включенных приборах. И именно поэтому им не нужен свой собственный источник питания, так как энергию для отклонения указательной стрелки они получают от участка схемы, на котором проводится замер электрических величин.

С омметром другая история. Омметр замеряет сопротивление. Но замерить сопротивление участка цепи, которое находиться под рабочим напряжением нельзя. Можно лишь замерить ток и напряжение на участке цепи и с помощью закона ома вычислить сопротивление этого участка. Думаю, с этим понятно.

Поэтому омметр используют лишь в тех случаях, когда нужно измерить сопротивление участка цепи или радиодетали при выключенном рабочем электропитании. А для того, чтобы определить сопротивление какого-либо участка цепи или радиодетали, нужно пропустить через него пусть и небольшой ток, которого достаточно для отклонения стрелки стрелочного прибора. Именно поэтому стрелочные вольтметры и амперметры могут работать и без батареи питания, но вот даже стрелочный омметр без батарейки работать не будет.

К недостаткам стрелочных приборов можно отнести достаточно большие габариты, необходимости калибровки, трудоёмкость при считывании показаний. Но, несмотря на это, и у стрелочных приборов есть свои преимущества.

Преимущество стрелочных приборов.

Что можно сказать в пользу стрелочных измерительных приборов? А вот что. Как уже говорилось, стрелочный амперметр и вольтметр не нуждаются в источнике питания. Об этом весомом преимуществе вспоминаешь регулярно, когда в цифровом мультиметре наглухо садится батарейка

Современный мультиметр в обязательном порядке требует наличия батареи питания. Она нужна для того, чтобы питать микросхемы контроллера и дисплея, на котором отображаются результаты измерений.

В пользу стрелочных приборов можно отнести и то, что они имеют достаточно простое устройство. Это напрямую сказывается на ремонтопригодности таких приборов. Восстановить работу стрелочного прибора порой не так уж и сложно и дорого, в то время как восстановить современный цифровой мультиметр иногда просто невозможно.

Читайте также:  Как собрать электрощиток в частном доме 220в

Взглянем на внутренности цифрового мультиметра.

Прибор питается от батарейки типа «Крона» напряжением 9 вольт. Её, предохранитель и контроллер прибора видно при снятой задней стенке. Также видны контактные участки многопозиционного переключателя и другие элементы схемы.

Рассмотрим основные практические измерения с помощью популярного прибора DT-830B. Прибор представляет собой компактный универсальный мультиметр, позволяющий измерять постоянное и переменное напряжение, силу тока и сопротивление. Кроме того на панели прибора есть специальный разъём для проверки коэффициента усиления h21Э (hFE) маломощных транзисторов.

Практическая работа с мультиметром DT-830B.

Прежде чем приступать к работе следует твёрдо запомнить одно правило. Независимо от того, что вы собираетесь мерить: ток, напряжение или сопротивление всегда необходимо начинать с максимального предела и поэтапно переходить на более низкие пределы измерения.

Пределы измерения омметра выглядят вот так.

На панели мультиметра DT-830B они ограничены зелёной линией. Прибор имеет 5 пределов измерений:

200 – на этом пределе измеряются сопротивления величиной до 200 Ом;

2000 – на этом пределе измеряются сопротивления до 2 килоом (2 кОм = 2000 Ом);

20k – на этом пределе измеряются сопротивления, величина которых не превышает 20 килоом (20 кОм = 20 000 Ом);

200k – предел для измерения сопротивлений до 200 килоом (200 кОм = 200 000 Ом);

Ну, и наконец, 2000k – предел для измерения сопротивлений до 2 мегаом.

Если вы запутались в килоомах и мегаомах, и не знаете как определить, сколько это будет в омах, то добро пожаловать сюда. Там подробно рассказано о сокращённой записи численных величин.

Когда в режиме измерения сопротивления оба щупа разомкнуты, на индикаторе в старшем разряде высвечивается цифра 1, что означает бесконечно большое сопротивление.

А при замкнутых накоротко щупах на индикаторе высвечиваются три нуля. Это значить, что измерительная цепь коротко замкнута. Иногда самая правая цифра может быть 1 или 2 (на дисплее типа вот так 001 или 002). Это величина погрешности самого прибора. Она настолько незначительна, что ей можно пренебречь.

У профессиональных мультиметров, например В-38, которые используются в лабораториях, имеется потенциометр калибровки, с помощью которого можно установить > 0 of your page –>

Как работает омметр?

А Вы знаете, как работает омметр?

Омметр

Омметры – это электрические устройства, используемые для измерения сопротивления данного проводника. Этот измерительный прибор работает на основе закона Ома, который применяется к электрическим схемам. Согласно этому закону ток (I), который течет между двумя точками в проводнике, прямо пропорционален напряжению (V) или разности потенциалов между двумя точками. Он также обратно пропорционален сопротивлению (R) между ними. Следовательно, математически V = IR. Существуют так же такие устройства как мегаомметры, которые используются, чтобы измерить сопротивление изоляции в электрических цепях, которые не находятся под напряжением.

Одно из таких устройств – это мегаомметр ЭС0202/2Г

Чтобы измерить сопротивление данного проводника, красный и черный выводы омметра подключены соответственно к положительным и отрицательным выводам проводника. Сопротивление провода или цепи указано иглой, скользящей по шкале устройства. Эти метры измеряют сопротивление в Ом, обозначаемое греческой прописной буквой омега или Ω.

Какова правильная работа омметра?

Охметр никогда не должен подключаться к источнику напряжения, так как он может повредить оборудование. Это связано с тем, что устройство уже имеет источник, который подает напряжение для измерения сопротивления данного проводника. Сопротивление измеряется в зависимости от падения напряжения на клеммах проводника. В аналоговом измерителе дальняя левая часть шкалы указывает на бесконечное сопротивление, а крайняя правая сторона обозначает нулевое сопротивление.

Простое аналоговое устройство состоит из батареи, которая является источником напряжения, подключенной к движущемуся счетчику. Переменный резистор также соединен последовательно с этой комбинацией так, чтобы игла точно показывала отклонение в полном масштабе и не превышала знак нулевого сопротивления. Этот резистор также ограничивает ток и корректирует снижение напряжения, вызванное старением батареи. Перед использованием аналоговые омметры должны быть откалиброваны, а цифровые – обычно самокалиброваны.

Как откалибровать омметр для правильной работы?

Для калибровки аналогового счетчика оба провода должны удерживаться вместе. Регулятор регулировки помогает установить переменный резистор. Его необходимо вручную поворачивать так, чтобы игла указывала на нулевое сопротивление; другими словами, теперь игла находится в крайнем правом углу. Этот шаг известен как «обнуление» счетчика, и его следует повторять каждый раз до того, как будет измерено сопротивление любого провода или цепи. В случае цифрового устройства удерживание проводов вместе укажет 0 Ом, что достаточно для его калибровки.

В дополнение к измерению сопротивления, омметры могут использоваться для проверки целостности электрического соединения. Например, если игла опирается на бесконечное сопротивление в крайнем левом углу шкалы, это указывает на отсутствие непрерывности цепи. Это означает, что в цепи есть открытая точка. С другой стороны, если измеренное значение сопротивления равно нулю или намного меньше ожидаемого значения, это означает короткое замыкание в цепи.

Еще по теме:

А Вы знаете, как работает процесс покупки дома? Покупка дома Процесс покупки дома может быть…

А Вы знаете, как работает электрическая розетка? Электрическая розетка В каждом доме, офисном здании и…

А Вы знаете, как измеряется электрическое сопротивление? Электрическое сопротивление ствует свободному потоку электрического тока или…

А Вы знаете про изготовление высоковольтных кабелей? Современное изготовление высоковольтных кабелей Процесс изготовления лучших кабелей…

Омметр

Омме́тр (Ом + др.-греч. μετρεω «измеряю») — измерительный прибор непосредственного отсчёта для определения электрических активных (омических) сопротивлений. Обычно измерение производится по постоянному току, однако, в некоторых электронных омметрах возможно использование переменного тока. Разновидности омметров: мегаомметры, гигаомметры, тераомметры, миллиомметры, микроомметры, различающиеся диапазонами измеряемых сопротивлений.

Читайте также:  Как проверить стартер лампы дневного света

Содержание

  • 1 Классификация и принцип действия
    • 1.1 Классификация
    • 1.2 Магнитоэлектрические омметры
    • 1.3 Логометрические мегаомметры
    • 1.4 Аналоговые электронные омметры
    • 1.5 Цифровые электронные омметры
    • 1.6 Измерения малых сопротивлений. Четырёхпроводное подключение
  • 2 Наименования и обозначения
    • 2.1 Видовые наименования
    • 2.2 Обозначения
  • 3 Основные нормируемые характеристики
  • 4 Другие средства измерения сопротивлений
    • 4.1 Измерение сопротивления по постоянному току
    • 4.2 Измерение сопротивления по переменному току
  • 5 Литература и документация
    • 5.1 Литература
    • 5.2 Нормативно-техническая документация
  • 6 Ссылки
  • 7 См. также

Классификация и принцип действия

Классификация

  • По исполнению омметры подразделяются на щитовые, лабораторные и переносные
  • По принципу действия омметры бывают магнитоэлектрические — с магнитоэлектрическим измерителем или магнитоэлектрическим логометром (мегаомметры) и электронные — аналоговые или цифровые

Магнитоэлектрические омметры

Действие магнитоэлектрического омметра основано на измерении силы тока, протекающего через измеряемое сопротивление при постоянном напряжении источника питания, с помощью магнитоэлектрического микроамперметра. Для измерения сопротивлений от сотен ом до нескольких мегаом измеритель (микроамперметр с добавочным сопротивлением), источник постоянного напряжения и измеряемое сопротивление rx включают последовательно. В этом случае сила тока I в измерителе равна: I = U/(r + rx), где U — напряжение источника питания; r — сопротивление измерителя (сумма добавочного сопротивления и сопротивления рамки микроамперметра).

Согласно этой формуле, магнитоэлектрический омметр имеют нелинейную шкалу. Кроме того, она является обратной (нулевому значению сопротивления соответствует крайнее правое положение стрелки прибора). Перед началом измерения сопротивления необходимо выполнить установку нуля (скорректировать величину r) специальным регулятором на передней панели при замкнутых входных клеммах прибора, для компенсации нестабильности напряжения источника питания.

Поскольку типичное значение тока полного отклонения магнитоэлектрических микроамперметров составляет 50..200 мкА, для измерения сопротивлений до нескольких мегаом достаточно напряжения питания, которое даёт встроенная батарейка. Более высокие пределы измерения (десятки — сотни мегаом) требуют использования внешнего источника постоянного напряжения порядка десятков — сотен вольт.

Для получения предела измерения в единицы килоом и сотни ом, необходимо уменьшить величину r и соответственно увеличить ток полного отклонения измерителя путём добавления шунта.

При малых значениях rx (до нескольких ом) применяется другая схема: измеритель и rx включают параллельно . При этом измеряется падение напряжения на измеряемом сопротивлении, которое, согласно закону Ома, прямо пропорционально сопротивлению, (при условии I=const).

  • ПРИМЕРЫ: М419, М372, М41070/1

Логометрические мегаомметры

Основой логометрических мегаомметров является логометр, к плечам которого подключаются в разных комбинациях (в зависимости от предела измерения) образцовые внутренние резисторы и измеряемое сопротивление, показание логометра зависит от соотношения этих сопротивлений. В качестве источника высокого напряжения, необходимого для проведения измерений, в таких приборах обычно используется механический индуктор — электрогенератор с ручным приводом, в некоторых мегаомметрах вместо индуктора применяется полупроводниковый преобразователь напряжения.

  • ПРИМЕРЫ: ЭС0202, М4100

Аналоговые электронные омметры

Принцип действия электронных омметров основан на преобразовании измеряемого сопротивления в пропорциональное ему напряжение с помощью операционного усилителя. Измеряемый объект включается в цепь обратной связи (линейная шкала) или на вход усилителя.

  • ПРИМЕРЫ: Е6-13А, Ф4104-М1

Цифровые электронные омметры

Цифровой омметр представляет собой измерительный мост с автоматическим уравновешиванием. Уравновешивание производится цифровым управляющим устройством методом подбора прецизионных резисторов в плечах моста, после чего измерительная информация с управляющего устройства подаётся на блок индикации.

  • ПРИМЕРЫ: ОА3201-1, Е6-23, Щ34

Измерения малых сопротивлений. Четырёхпроводное подключение

При измерении малых сопротивлений может возникать дополнительная погрешность из-за влияния переходного сопротивления в точках подключения. Чтобы избежать этого применяют т. н. метод четырёхпроводного подключения. Сущность метода состоит в том, что используются две пары проводов: по одной паре на измеряемый объект подаётся заданный ток, с помощью другой пары производится измерение напряжения на объекте, пропорционального силе тока и сопротивлению объекта. Провода подсоединяются к выводам измеряемого двухполюсника таким образом, чтобы каждый из токовых проводов не касался непосредственно соответствующего ему провода напряжения, при этом получается, что переходные сопротивления в местах контактов не включаются в измерительную цепь.

Наименования и обозначения

Видовые наименования

  • Микроомметр — омметр с возможностью измерения очень малых сопротивлений (менее 1мОм)
  • Миллиомметр — омметр для измерения малых сопротивлений (единицы — сотни миллиом)
  • Мегаомметр (устар. мегомметр) — омметр для измерения больших сопротивлений (единицы — сотни мегаом)
  • Тераомметр — омметр для измерения очень больших сопротивлений (единицы — сотни тераом)
  • Измеритель сопротивления заземления — специальный омметр для измерения переходных сопротивлений в устройствах заземления

Обозначения

Омметры обозначаются либо в зависимости от системы (основного принципа действия), либо по ГОСТ 15094

  • Мхх — приборы магнитоэлектрической системы
  • Фхх, Щхх — приборы электронной системы
  • Е6-хх — измерители сопротивлений, маркировка по ГОСТ 15094

Измерение сопротивлений

Мост для измерения сопротивления

Мерой электрического сопротивления, т. е. образцом единицы сопротивления, является образцовая катушка сопротивления. Набор катушек сопротивления, соединяемых по определенной схеме, называется магазином сопротивлений.

Магазины сопротивлений бывают ш тепсельные и рычажные, у первых переключение катушек производится при помощи штепселей, у вторых — при помощи рычажных переключателей. На рис. 7-28 дана схема одной «декады» пятикатушечного рычажного магазина сопротивления, дающего возможность переключателем изменять включенное между зажимами сопротивление от 0 до 9 ом ступенями по 1 ом.

Мост для измерения сопротивлений, схема которого показана на рис. 7-29, состоит из трех плеч — трех магазинов сопротивлений: r1, r2 и r Четвертым плечом служит измеряемое сопротивление rх. В одну диагональ моста включают источник питания, в другую — гальванометр.

Изменяя сопротивления трех плеч, при замкнутой кнопке Ʀ1 можно получить равенство потенциалов: точек А и Б, о чем можно судить по отсутствию отклонения стрелки гальванометра при замыкании кнопки Ʀ2.

Читайте также:  Как замерить силу тока аккумулятора мультиметром

Рис. 7-28. Рычажный пятикатушечный магазин сопротивлений

В этом случае напряжение UВА = U и Vаг = UБГ или I1r1 = I2rх и I1r2 = I2r. Разделив почленно, получим;

По найденной формуле для уравновешенного м о с т а и подсчитывают искомое сопротивление.

Рис. 7-29. Мост для измерения сопротивлений.

Если в схеме моста сопротивления трех плеч и напряжение питания неизменны, то ток в гальванометре зависит только от сопротивления r х. Это позволяет на шкале гальванометра нанести деления, дающие значения искомого сопротивления или величины, от которой оно зависит, например температуры. Такие измерительные мосты называются неуравновешенными.

Измерение сопротивлений амперметром и вольтметром

Величина сопротивления найденная по показанию амперметра и вольтметра (рис. 7-30), больше действительной величины искомого сопротивления rх на величину сопротивления амперметра, так как в схеме на рис. 7-30 вольтметр измеряет сумму на пряжений на сопротивлении rх и на амперметре. Если измеряемое сопротивление значительно больше сопротивления амперметра, то погрешность измерения будет небольшой.

Рис. 7-30. Схема соединения для измерений сопротивлений амперметром и вольтметром (для больших сопротивлений).

наиденная по показанию приборов (рис. 7-31), меньше действительной величины искомого сопротивления rx так как амперметр измеряет сумму токов в сопротивлении r х и в вольтметре. Если измеряемое сопротивление значительно меньше сопротивления вольтметра, то погрешность будет небольшой.

Рис. 7-31. Схема соединения для измерений сопротивлений амперметром и вольтметром (для меньших сопротивлений).

Омметры

Омметры и мегомметры это приборы для непосредственного измерения сопротивлений.

Они делятся на две группы: омметры, показания которых зависят от напряжения источника питания, и омметры, показания которых не зависят от напряжения источника питания. Омметр первой группы (рис. 7-32) состоит из магнитоэлектрического измерительного механизма с добавочным сопротивлением rд и последовательно соединяемым измеряемым сопротивлением rх — последовательная схема. Омметр часто снабжается батареей сухих элементов.

Рис. 7-3-2. Последовательная схема омметра, показания которого зависят от напряжения источника питания.

При разомкнутой кнопке Ʀ ток в цепи

I = Cα = U/(rx + rи + rд)

где α и С — угол поворота подвижной части и постоянная по току измерительного механизма. Из выражения следует, что

α = (U/C)(1/ rx + rи + rд)

Таким образом, для получения однозначной зависимости угла поворота подвижной части от измеряемого сопротивления, а следовательно, возможности нанести на шкале значения этого сопротивления необходимо при постоянной величине rи + rд обеспечить постоянство отношения U/C.

Для поддержания неизменным отношения U/C при изменении напряжения источника питания необходимо регулировать величину С, что достигается изменением магнитной индукции в воздушном зазоре измерительного механизма магнитным шунтом. Магнитный шунт это стальная пластина, которую поворо том винта приближают или удаляют от полюсных башмаков N’, S’ измерительного механизма (рис. 7-1).

Для регулировки величины С, при подключенных батарее и сопротивлении rx замкнув кнопку Ʀ изменяют поло жение магнитного шунта до тех пор, пока стрелка омметра не установится на нуль шкалы. Разомкнув кнопку, отсчитывают на шкале значение измеряемой величины.

На рис. 7-33 дана другая — параллельная схема того же омметра, в которой измеряемое сопротивление r х соединяется параллельно измерительному механизму. Можно доказать, что при постоянной величине rи + rд и неизменном отношении U /С угол поворота подвижной части будет однозначно зависеть от измеряемого сопротивления.

Омметры второй группы имеют магнитоэлектрический измерительный механизм с двумя рамками на одной оси (рис. 7-34). Ток к рамкам подводится при помощи безмомент йых ленточек, не создающих противодействующих моментов.

Рис. 7-33. Параллельная схема омметра, показания которого зависят от напряжения источника, питания.

Токи в рамках направлены противоположно, так что от взаимодействия их с полем магнита создаются два момента, направленные в разные стороны. Разность этих моментов вызывает поворот подвижной части на угол, при котором моменты взаимно уравновешивают друг друга. Угол поворота подвижной части определяется отношением токов в рамках, т. е.

Измерительные механизмы, угол поворота которых зависит от отношения токов, называются логометрами.

Рис. 7-34. Измерительный механизм логометра.

Одна параллельная ветвь омметра логометра (рис. 7-35) состоит из рамки и измеряемого сопротивления rx, другая ветвь — из второй рамки и добавочного сопротивления r д. Приняв во внимание, что токи в параллельных ветвях распределяются обратнопропорционально их сопротивлениям, можно написать:

Так как rд — неизменно, то угол поворота зависит только от величины измеряемого сопротивления.

Источником питания обычно служит магнитоэлектрический генератор, расположенный в кожухе омметра, приводимый во вращение от руки.

Измерение сопротивления изоляции

Сопротивление изоляции установки легко изменяется, поэтому его необходимо периодически измерять.

Рис. 7-35. Схема омметра логометра.

В соответствии с Правилами устройства электроустановок (ПУЭ):

а) испытание сопротивления изоляции осветительных и силовых электропроводок производится мегомметром с напряжением 1 000 в;

б) наименьшее сопротивление изоляций допускается 0,5 Мом;

в) сопротивление изоляции при снятых плавких вставках измеряется на участке между смежными предохранителями или за последним предохранителем, между любым проводом и землей, а также между любыми двумя проводами.

Сопротивление изоляции сети, не находящейся под рабочим напряжением, определяется при помощи мегомметра. Для измерения изоляции один из зажимов, помеченный буквой Л, присоединяют к испытуемому проводу, а второй зажим мегомметра, помеченный буквой 3, соединяют с землей (рис. 7-36). Вращая рукоятку мегомметрам номинальной скоростью, отсчитывают на шкале искомое сопротивление.

Рис. 7-36. Схема для измерения сопротивления изоляции провода относительно земли.

Присоединив зажим мегомметра Л к второму проводу, аналогично определяют сопротивление изоляции второго провода относительно земли. Для измерения сопротивления изоляции между двумя проводами к ним присоединяют два зажима мегомметра (рис. 7-37). Аналогичным образом производится измерение сопротивления изоляции электрических машин и аппаратов.

Статья на тему Измерение сопротивлений